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The Entscheidungsproblem

In the early 20th century, mathematicians were wondering whether maths
could be automated. In 1928, at a congress, David Hilbert posed the
Entscheidungsproblem, or Decision Problem.

In modern terms (simplifying a bit), it says:

Write a computer program that can tell us whether any mathe-
matical statement is true or false.

Hilbert didn’t know about computer programs – he talked about ‘a
procedure using a finite number of operations’. So this is the master
problem of mathematics: solve it, and mathematicians never need to do
proofs again!

“For positive integers n, a, b, c , if n > 2, then an + bn 6= cn ”

↓
deciding machine

↓
“True!”
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The end of optimism

Hilbert thought the problem would be solved, just didn’t know how long
it would take. All part of a grand programme for mathematics.

In the early 1930s, three people shook the foundations of mathematics.

Kurt Gödel Alonzo Church Alan Turing
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Alan Turing

Born in London in 1912, to parents who lived in
India (his father was a civil servant).

Fairly miserable time at school (Sherborne), where
he was considered to be wasting his time being
interested in science.

Went to King’s College Cambridge in 1931 to read
maths – a much more congenial environment, both
for a mathematician, and for a homosexual, as he
now knew he was.

First-class degree in 1934, Fellow in 1935.

By 1933, he had heard of Gödel’s shattering result,
that no logic could prove all theorems.

In 1935, he heard about the Entscheidungsproblem.
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What is computing?

Turing had to make precise Hilbert’s idea of ‘procedure’.

He gave a theoretical pencil and paper method of calculation; any modern
language will do just as well.

He argued that if we can compute something, we can compute it with
one of these programs.
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Computing with computers

The second idea – based on Gödel’s idea in logic – was that a procedure
can calculate things about a procedure.

To us, this is natural: you write a program, and your program is compiled
or interpreted by another program, and eventually machine code runs on
a real physical computer.

Then, it was not so natural.
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Impossible computations

The third idea – again, based on Gödel’s technique in logic – was to find
a statement about procedures that could not possibly be calculated by a
procedure.
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The Halting Problem

The statement is: given a procedure, does it eventually finish computing,
or does it get stuck in a loop?

↓
P, the halting decider

↓
“Good!”

8



The Halting Problem

The statement is: given a procedure, does it eventually finish computing,
or does it get stuck in a loop?

↓
P, the halting decider

↓
“Bad!”

8



The Loop Snooper

Write a program that runs a procedure on itself and halts if it loops, and
loops if it halts!

A

↓

Q, the loop snooper

A → A
↓

P, the halting decider
Says ’Bad!’↙ ↘Says ‘Good!’

halt loop for ever
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The Loop Snooper Scoops the Halting Decider

Ask the Loop Snooper to analyse itself! What happens?

Q, the loop snooper

A → A
↓

P, the halting decider
Says ’Bad!’↙ ↘Says ‘Good!’

halt loop for ever
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Whatever P says Q does, Q does the opposite

Q, the loop snooper

A → A
↓

P, the halting decider
Says ’Bad!’↙ ↘Says ‘Good!’

halt loop for ever

↓
Q, the loop snooper

Q, the loop snooper

A → A
↓

P, the halting decider
Says ’Bad!’↙ ↘Says ‘Good!’

halt loop for ever

→
Q, the loop snooper

A → A
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↓
P, the halting decider Can’t exist!
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halt loop for ever

10



Scooping the Loop Snooper
Geoffrey K. Pullum

Professor Emeritus of General Linguistics
University of Edinburgh
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Turing and Theoretical Computer Science

Church had already broken the Entscheidungsproblem a few months
previously. Turing learned this, and went to Princeton to study with him.

Turing’s idea of computing is much more intuitive than Church’s – but
they were able to show they were the same. Now both are part of the
foundations of computer science.

Turing continued working on computation and logic until war broke out.
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Turing at Bletchley Park

Turing joined the code-breaking team at Bletchley Park.

He was instrumental in many of their greatest achievements, including
the breaking of Enigma.

Reconstruction of the Bombe – Bletchley Museum
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Turing and Computers

After the war, Turing worked in London and Manchester on the first real
computers, as well as on mathematics.

The Manchester Mark 1
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The Turing Test

He also thought about Artificial Intelligence, and proposed a test for truly
intelligent computers:
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Turing the biologist

He also studied how patterns (e.g. spots and stripes on fish) arise in
biology.

He made clever mathematical models of chemical reactions to do this.

Biologists still use his work.
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Life and Death

Turing was homosexual, and in January 1952, after his house was burgled
by an acquaintance of his boyfriend, he acknowledged this to the police.

He was charged with gross indecency, and pled guilty.

He was offered a choice between prison and an experimental hormone
treatment intended ‘to reduce libido’. He took the treatment, for a year.

Another year later, on 8 June 1954, he was found dead of cyanide
poisoning – he used cyanide for chemistry and electroplating experiments.

The inquest found suicide, and his biographers mostly agree. His relatives
and closest friends thought it was accident.
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Hilbert’s Tenth Problem

Solve Diophantine equations: polynomial equations about integers.

E.g., find w , x , y , z such that w3 + x3 = y3 + z3.

(Many answers, e.g. 12, 1, 9, 10.)

E.g., find a, b, c such that a3 + b3 = c3.

(No solutions: the Fermat–Wiles Theorem, a.k.a. Fermat’s Last Theorem.)

It turns out that this is undecidable – no program can solve it.

Took 40 years to prove: final step by Yuri Matiyasevich in 1970, building
on previous steps by Martin Davis, Hilary Putnam and Julia Robinson.
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