
Recursivity in phonology – what can it mean below
the word?

Julian Bradfield

University of Edinburgh

The Hitchhiker’s Guide to

Recursion

The Hitchhiker’s Guide to

Recursion

The Hitchhiker’s Guide to

Recursion

The Hitchhiker’s Guide to

•••

Recursion

The Hitchhiker’s Guide to

Recursion

The Hitchhiker’s Guide to

Recursion

The Hitchhiker’s Guide to

Recursion

The Hitchhiker’s Guide to

•••

Recursion

The Hitchhiker’s Guide to

Recursion

The Hitchhiker’s Guide to

Recursion

The Hitchhiker’s Guide to

Recursion

The Hitchhiker’s Guide to

DON’T
PANIC

Recursion

Brief History

Recursive procedures sensu lato

I go back millennia: Indian mathematicians approximated
√

2.

I but can mostly be seen as iterative (see later)

Recursive definitions

I first appear with Dedekind in the 1890s

I became the foundation of set theory (and thus mathematics:)
around that time

I were studied intensively per se in the 1930s–50s

Recursive procedures sensu stricto

I are themselves recursive definitions

I have a rich theory even confined to procedures on integers

I and became a key part of programming from the 50s

Brief History

Recursive procedures sensu lato

I go back millennia: Indian mathematicians approximated
√

2.

I but can mostly be seen as iterative (see later)

Recursive definitions

I first appear with Dedekind in the 1890s

I became the foundation of set theory (and thus mathematics:)
around that time

I were studied intensively per se in the 1930s–50s

Recursive procedures sensu stricto

I are themselves recursive definitions

I have a rich theory even confined to procedures on integers

I and became a key part of programming from the 50s

Brief History

Recursive procedures sensu lato

I go back millennia: Indian mathematicians approximated
√

2.

I but can mostly be seen as iterative (see later)

Recursive definitions

I first appear with Dedekind in the 1890s

I became the foundation of set theory (and thus mathematics:)
around that time

I were studied intensively per se in the 1930s–50s

Recursive procedures sensu stricto

I are themselves recursive definitions

I have a rich theory even confined to procedures on integers

I and became a key part of programming from the 50s

Recursive definitions

(Modernized) Peano’s definition of natural numbers:

I 0 is a natural number
I if n is a natural number, so is S(n)
I (nothing else is a natural number)

and then equality and arithmetic are defined recursively too.

Syntax:
NP→ N | Adj NP

Binary trees:
Tree→ Leaf | Tree Tree

Tree := leaf | node(Tree,Tree)

Tree = {∅} ∪ (Tree× Tree)

Tree = µX .{∅} ∪ (X × X)

More syntax:

NP→ N | Adj NP | NP PP

PP→ P NP

Recursive definitions

(Modernized) Peano’s definition of natural numbers:

I 0 is a natural number
I if n is a natural number, so is S(n)
I (nothing else is a natural number)

and then equality and arithmetic are defined recursively too.

Syntax:
NP→ N | Adj NP

Binary trees:
Tree→ Leaf | Tree Tree

Tree := leaf | node(Tree,Tree)

Tree = {∅} ∪ (Tree× Tree)

Tree = µX .{∅} ∪ (X × X)

More syntax:

NP→ N | Adj NP | NP PP

PP→ P NP

Recursive definitions

(Modernized) Peano’s definition of natural numbers:

I 0 is a natural number
I if n is a natural number, so is S(n)
I (nothing else is a natural number)

and then equality and arithmetic are defined recursively too.

Syntax:
NP→ N | Adj NP

Binary trees:
Tree→ Leaf | Tree Tree

Tree := leaf | node(Tree,Tree)

Tree = {∅} ∪ (Tree× Tree)

Tree = µX .{∅} ∪ (X × X)

More syntax:

NP→ N | Adj NP | NP PP

PP→ P NP

Recursive definitions

(Modernized) Peano’s definition of natural numbers:

I 0 is a natural number
I if n is a natural number, so is S(n)
I (nothing else is a natural number)

and then equality and arithmetic are defined recursively too.

Syntax:
NP→ N | Adj NP

Binary trees:
Tree→ Leaf | Tree Tree

Tree := leaf | node(Tree,Tree)

Tree = {∅} ∪ (Tree× Tree)

Tree = µX .{∅} ∪ (X × X)

More syntax:

NP→ N | Adj NP | NP PP

PP→ P NP

Recursion and Iteration

A natural number is a string of the form I∗

NP := Adj∗ N

Tree = {T ⊆ 2∗ : T is prefix-closed}

Recursive definitions and computations can be implemented using
iteration, arithmetic or pointers, and unbounded memory.

Iterative definitions basically give regular expressions – much less
than recursion. (Cf. Jeff Heinz et al. on subregular phonology.)

Recursion and Iteration

A natural number is a string of the form I∗

NP := Adj∗ N

Tree = {T ⊆ 2∗ : T is prefix-closed}

Recursive definitions and computations can be implemented using
iteration, arithmetic or pointers, and unbounded memory.

Iterative definitions basically give regular expressions – much less
than recursion. (Cf. Jeff Heinz et al. on subregular phonology.)

Recursion entails infinity!

There are infinitely many natural numbers, NPs, binary trees, etc.
This is required by the definitions.

‘Tree2 = The binary trees of depth at most two’:

I define Tree, define depth d (by recursion), say
{T ∈ Tree : d(T) ≤ 2}. This requires infinity (and counting).

I Finitely by enumeration:
{ ∅, (∅, ∅), ((∅, ∅), ∅), (∅, (∅, ∅)), ((∅, ∅), (∅, ∅)) }. This is not
recursive.

I Finitely by level:
Tree0 = { ∅ } Tree1 = Tree0 ∪ Tree0 × Tree0
Tree2 = Tree1 ∪ Tree1 × Tree1
This is not recursive.

No (potential) infinity = no recursion!
Bounded recursion is not real recursion!

Recursion entails infinity!

There are infinitely many natural numbers, NPs, binary trees, etc.
This is required by the definitions.

‘Tree2 = The binary trees of depth at most two’:

I define Tree, define depth d (by recursion), say
{T ∈ Tree : d(T) ≤ 2}. This requires infinity (and counting).

I Finitely by enumeration:
{ ∅, (∅, ∅), ((∅, ∅), ∅), (∅, (∅, ∅)), ((∅, ∅), (∅, ∅)) }. This is not
recursive.

I Finitely by level:
Tree0 = { ∅ } Tree1 = Tree0 ∪ Tree0 × Tree0
Tree2 = Tree1 ∪ Tree1 × Tree1
This is not recursive.

No (potential) infinity = no recursion!
Bounded recursion is not real recursion!

Recursion entails infinity!

There are infinitely many natural numbers, NPs, binary trees, etc.
This is required by the definitions.

‘Tree2 = The binary trees of depth at most two’:

I define Tree, define depth d (by recursion), say
{T ∈ Tree : d(T) ≤ 2}. This requires infinity (and counting).

I Finitely by enumeration:
{ ∅, (∅, ∅), ((∅, ∅), ∅), (∅, (∅, ∅)), ((∅, ∅), (∅, ∅)) }. This is not
recursive.

I Finitely by level:
Tree0 = { ∅ } Tree1 = Tree0 ∪ Tree0 × Tree0
Tree2 = Tree1 ∪ Tree1 × Tree1
This is not recursive.

No (potential) infinity = no recursion!
Bounded recursion is not real recursion!

Recursion entails infinity!

There are infinitely many natural numbers, NPs, binary trees, etc.
This is required by the definitions.

‘Tree2 = The binary trees of depth at most two’:

I define Tree, define depth d (by recursion), say
{T ∈ Tree : d(T) ≤ 2}. This requires infinity (and counting).

I Finitely by enumeration:
{ ∅, (∅, ∅), ((∅, ∅), ∅), (∅, (∅, ∅)), ((∅, ∅), (∅, ∅)) }. This is not
recursive.

I Finitely by level:
Tree0 = { ∅ } Tree1 = Tree0 ∪ Tree0 × Tree0
Tree2 = Tree1 ∪ Tree1 × Tree1
This is not recursive.

No (potential) infinity = no recursion!
Bounded recursion is not real recursion!

Recursion entails infinity!

There are infinitely many natural numbers, NPs, binary trees, etc.
This is required by the definitions.

‘Tree2 = The binary trees of depth at most two’:

I define Tree, define depth d (by recursion), say
{T ∈ Tree : d(T) ≤ 2}. This requires infinity (and counting).

I Finitely by enumeration:
{ ∅, (∅, ∅), ((∅, ∅), ∅), (∅, (∅, ∅)), ((∅, ∅), (∅, ∅)) }. This is not
recursive.

I Finitely by level:
Tree0 = { ∅ } Tree1 = Tree0 ∪ Tree0 × Tree0
Tree2 = Tree1 ∪ Tree1 × Tree1
This is not recursive.

No (potential) infinity = no recursion!
Bounded recursion is not real recursion!

Recursion entails infinity!

There are infinitely many natural numbers, NPs, binary trees, etc.
This is required by the definitions.

‘Tree2 = The binary trees of depth at most two’:

I define Tree, define depth d (by recursion), say
{T ∈ Tree : d(T) ≤ 2}. This requires infinity (and counting).

I Finitely by enumeration:
{ ∅, (∅, ∅), ((∅, ∅), ∅), (∅, (∅, ∅)), ((∅, ∅), (∅, ∅)) }. This is not
recursive.

I Finitely by level:
Tree0 = { ∅ } Tree1 = Tree0 ∪ Tree0 × Tree0
Tree2 = Tree1 ∪ Tree1 × Tree1
This is not recursive.

No (potential) infinity = no recursion!
Bounded recursion is not real recursion!

Recursion in language

Does natural language have unbounded recursion at all?

The grammar in a speaker’s head is not the grammar in a
textbook. Humans have very small working memory.

Language games are outwith the bounds of natural language.

Recursion in language

Does natural language have unbounded recursion at all?

The grammar in a speaker’s head is not the grammar in a
textbook. Humans have very small working memory.

Language games are outwith the bounds of natural language.

Recursion in language

Does natural language have unbounded recursion at all?

The grammar in a speaker’s head is not the grammar in a
textbook. Humans have very small working memory.

Language games are outwith the bounds of natural language.

Bounds on recursion

Fred Karlsson (2007) argues that no natural language uses more
than two (maybe three) levels of centre-embedding (recursive
construct requiring unbounded memory).

Jim Hurford (2012) and students say maybe four is comprehensible:
Entweder
die Sprache,
die Kinder
von ihren,
sich an den Haaren zerrenden
Eltern
lernen,
ist Deutsch,
oder sie sind dumm.

Bounds on recursion

Fred Karlsson (2007) argues that no natural language uses more
than two (maybe three) levels of centre-embedding (recursive
construct requiring unbounded memory).

Jim Hurford (2012) and students say maybe four is comprehensible:

Entweder
die Sprache,
die Kinder
von ihren,
sich an den Haaren zerrenden
Eltern
lernen,
ist Deutsch,
oder sie sind dumm.

Bounds on recursion

Fred Karlsson (2007) argues that no natural language uses more
than two (maybe three) levels of centre-embedding (recursive
construct requiring unbounded memory).

Jim Hurford (2012) and students say maybe four is comprehensible:
Entweder
die Sprache,
die Kinder
von ihren,
sich an den Haaren zerrenden
Eltern
lernen,
ist Deutsch,
oder sie sind dumm.

Unbounded right embedding = iteration

This is the farmer sowing the corn,
That kept the cock that crowed in the morn.
That waked the priest all shaven and shorn,
That married the man all tattered and torn,
That kissed the maiden all forlorn,
That milked the cow with the crumpled horn,
That tossed the dog,
That worried the cat,
That killed the rat,
That ate the malt
That lay in the house that Jack built.

Everybody’s happy with iteration in supra-word phonology, right?

Unbounded left/centre-embedding in supra-word phonology???

Unbounded right embedding = iteration

This is the farmer sowing the corn,
That kept the cock that crowed in the morn.
That waked the priest all shaven and shorn,
That married the man all tattered and torn,
That kissed the maiden all forlorn,
That milked the cow with the crumpled horn,
That tossed the dog,
That worried the cat,
That killed the rat,
That ate the malt
That lay in the house that Jack built.

Everybody’s happy with iteration in supra-word phonology, right?

Unbounded left/centre-embedding in supra-word phonology???

Unbounded right embedding = iteration

This is the farmer sowing the corn,
That kept the cock that crowed in the morn.
That waked the priest all shaven and shorn,
That married the man all tattered and torn,
That kissed the maiden all forlorn,
That milked the cow with the crumpled horn,
That tossed the dog,
That worried the cat,
That killed the rat,
That ate the malt
That lay in the house that Jack built.

Everybody’s happy with iteration in supra-word phonology, right?

Unbounded left/centre-embedding in supra-word phonology???

Infra-word potential recursion: prosody

For example, van der Hulst (2010) claims:

Conset V Conset V Conset V

Vsyl

Vrhy

Vsyl-ft

Vrhy

Vsyl-ft

for the English dactyl (serendipity).

Level 5 recursion in feet when we can’t even do that in syntax?

Infra-word potential recursion: prosody

For example, van der Hulst (2010) claims:

Conset V Conset V Conset V

Vsyl

Vrhy

Vsyl-ft

Vrhy

Vsyl-ft

for the English dactyl (serendipity).

Level 5 recursion in feet when we can’t even do that in syntax?

Infra-word potential recursion: prosody

C V C V C V

σσσ

Ft

Feet longer than dactyls are also iterative in most theories (perhaps
excepting grid–mark phonology) and tend to be supra-word.

(Is ‘characterlessness’ really one foot?)

Feature geometry and friends

Tom Güldemann’s feature geometry of clicks:

Element geometry and friends

Markus will (almost certainly:) show us things like

xN
{I}

x

N′ x

N′′

If you buy the idea that sounds are represented and distinguished
by configurations of trees of sets of elements, this might be
recursion . . . but how far? Level three? So not recursion.

Element geometry and friends

Markus will (almost certainly:) show us things like

xN
{I}

x

N′ x

N′′

If you buy the idea that sounds are represented and distinguished
by configurations of trees of sets of elements, this might be
recursion . . . but how far? Level three? So not recursion.

Does infra-word phonology have recursivity, or does it not?

mu

Does infra-word phonology have recursivity, or does it not?

mu

Does infra-word phonology have recursivity, or does it not?

mu

