
OT or not OT – is that a question?

Julian Bradfield

University of Edinburgh



Why (might people) do OT?

I Wide ranging framework.

I Claims to universality.

I Simple basic mechanism.

I Sociology.



Why (might people) not do OT?

I Framework underspecified.

I ‘Universality’ isn’t.

I Complex basic mechanism.

I Sociology.



Framework

+ Solving ranked constraints to extract a ‘best’ member of a set
of candidates is general enough to apply to most linguistic
domains – or anything else.

− It’s almost meaningless until you know what ‘constraints’
(Con) are, and how candidates are produced (Gen).



How is OT pinned down?

In theory: OT soon formalized (Eisner (1997), Frank and Satta
(1998), et al.) in various mathematically nice ways.
Consequence: (a pinned and cut down version of) OT is equivalent
to finite-state transducers, so basically the same as those re-writing
rules used in the practice of generative phonology.

In practice: People write arbitrary stuff as constraints, whatever
suits the problem at hand. As for Gen . . .



How is OT pinned down?

In theory: OT soon formalized (Eisner (1997), Frank and Satta
(1998), et al.) in various mathematically nice ways.
Consequence: (a pinned and cut down version of) OT is equivalent
to finite-state transducers, so basically the same as those re-writing
rules used in the practice of generative phonology.

In practice: People write arbitrary stuff as constraints, whatever
suits the problem at hand. As for Gen . . .



Simple Basic Mechanism

Recap the basic mechanism:

I Gen produces a set of candidate output strings from an input
representation

I Check these strings against set of constraints (Con), linearly
(partially, probabilistically . . . ) ordered in priority.

I The answer is the string(s) whose first failed constraint is
lowest.

Simple to describe, apparently simple to apply . . .



. . . is complex

Filling in the dots:

I Gen is a function taking each of the (∞-ly many) input
representations to a (maybe ∞) set of candidates.

I Defining the way ranked constraints combine is non-trivial.

I Finding the answer(s) is a hard problem, even computationally.

OT is hard in theory: reasonable formalizations of OT are
NP-complete – and anyway, everybody knows that constraint
solving is hard.

It’s also hard to understand in practice . . .



. . . is complex

Filling in the dots:

I Gen is a function taking each of the (∞-ly many) input
representations to a (maybe ∞) set of candidates.

I Defining the way ranked constraints combine is non-trivial.

I Finding the answer(s) is a hard problem, even computationally.

OT is hard in theory: reasonable formalizations of OT are
NP-complete – and anyway, everybody knows that constraint
solving is hard.

It’s also hard to understand in practice . . .



. . . is complex

Filling in the dots:

I Gen is a function taking each of the (∞-ly many) input
representations to a (maybe ∞) set of candidates.

I Defining the way ranked constraints combine is non-trivial.

I Finding the answer(s) is a hard problem, even computationally.

OT is hard in theory: reasonable formalizations of OT are
NP-complete – and anyway, everybody knows that constraint
solving is hard.

It’s also hard to understand in practice . . .



. . . is complex

Filling in the dots:

I Gen is a function taking each of the (∞-ly many) input
representations to a (maybe ∞) set of candidates.

I Defining the way ranked constraints combine is non-trivial.

I Finding the answer(s) is a hard problem, even computationally.

OT is hard in theory: reasonable formalizations of OT are
NP-complete – and anyway, everybody knows that constraint
solving is hard.

It’s also hard to understand in practice . . .



How easy it is to be wrong:

Karttunen (2006)
“The insufficiency of pencil-and-paper linguistics”

Elenbaas (1999) and Kiparsky (2003) develop:

I OT theory of prosody, in ptic for stress patterns of Finnish.

I Target: trochaic stress, modified by ‘non-initial light syllable
followed by heavy becomes extra-metrical’. E.g.
rakas(ta)jattarenako

I Use nine constraints: only one ranking works.

I Ka. shows: it doesn’t, on *kalas(te)lemi(nen) and many
other longer words.



How easy it is to be wrong:

Karttunen (2006)
“The insufficiency of pencil-and-paper linguistics”

Elenbaas (1999) and Kiparsky (2003) develop:

I OT theory of prosody, in ptic for stress patterns of Finnish.

I Target: trochaic stress, modified by ‘non-initial light syllable
followed by heavy becomes extra-metrical’. E.g.
rakas(ta)jattarenako

I Use nine constraints: only one ranking works.

I Ka. shows: it doesn’t, on *kalas(te)lemi(nen) and many
other longer words.



What is a grammar, anyway?

Where do you stand between:

I A grammar is a descriptively adequate model of certain
empirical data.

I A grammar is an intensionally correct account of how
language actually works.



Back to basics

The first motivating example in Prince and Smolensky (1993) is
syllabification in Imdlawn Tashlhiyt Berber (Dell and Elmedlaoui
1985). Why does this motivate OT?

(Note that discrete prosody is a good place to do OT, because the
meaning of Gen is pretty obvious . . . )



ITB syllabification – overview

ITB has a simple CV(C) syllable structure – but any sound can be
a ‘vowel’.

How are words syllabified? “Simple”.

The most sonorous sounds (vowel or consonant) form the nuclei.
E.g.

txznakkw → txz.nakkw

tftkt → tf.tkt

‘Most sonorous’ is defined in the familiar way (low vowel, high
vowel, liquid, nasal, vcd fric, vcl fric, vcd stop, vcl stop).



ITB syllabification – original account

Dell and Elmedlaoui (1985) describe it in terms of two constraints
(see later).

They do it by an algorithm to do ‘core syllabification’.

The algorithm refers explicitly to the levels of the sonority
hierarchy:

Let Ti , for i = 1..8, be the set of segments at level i of the
(descending) sonority hierarchy. Ti was given as a feature matrix.
T1 = {a}, T2 = {i , u}, T3 = {l , r}, etc.



The DEA

Input: an array #s1s2 . . . sn of segments.

Output: the array with each segment tagged sC or sV if it’s onset
or nucleus, or s− otherwise.

Algorithm:

tag every segment with −

for i = 1..8 do
for j = 0..n − 1 do

if s−j s−j+1 and sj+1 ∈ Ti then

tag as sC
j sV

j+1

do some patch-up for codas etc.

i.e. “find the most sonorous CV syllables (from the left), then the
next most, and so on”.



ITB syllabification – the OT account (1)

Prince and Smolensky (1993), chap. 2, adapted for the same
notation:

There are two constraints in Con.

Ons: every non-initial syllable must have an onset (i.e. sV
j+1 ⇒ sC

j

for j > 0)

Hnuc: If x is more sonorous than y , x makes a better nucleus
than y .

Implemented as
A nucleus sV at level i on the sonority scale scores i violations of
Hnuc.

For ITB, Ons� Hnuc.

Gen generates all values of s that are possible syllabifications. (I.e.
every onset is followed by a nucleus.)



ITB syllabification – the OT account (1)

Prince and Smolensky (1993), chap. 2, adapted for the same
notation:

There are two constraints in Con.

Ons: every non-initial syllable must have an onset (i.e. sV
j+1 ⇒ sC

j

for j > 0)

Hnuc: If x is more sonorous than y , x makes a better nucleus
than y .
Implemented as
A nucleus sV at level i on the sonority scale scores i violations of
Hnuc.

For ITB, Ons� Hnuc.

Gen generates all values of s that are possible syllabifications. (I.e.
every onset is followed by a nucleus.)



‘Why OT is better’

In (fair, I hope) précis:

I The algorithm is aiming to do ‘harmonic evaluation’, i.e. find
the parse with the most harmonic (most sonorous) syllables.

I But it has this artifice of looping over the eight feature
matrices describing the sonority hierarchy.

I And it can be seen a bunch of traditional re-write rules, with
the harmonic evaluation hard-wired into the order of the rules.

I Whereas in OT, harmonic evaluation is the primitive, and is
out front, and

I The harmony is given by the interactions of the simple local
constraints.



ITB syllabification – the OT account (2)

In chap. 8, the OT account that really (or not) does the same as
the algorithm: Con is:

Ons, Parse, *P/�, *M/a
� *M/� � *M/i � . . . � *M/v � . . . � *M/t
� −Cod, *P/t . . .� . . . *P/a

And there are non-trivial definitions embedded in the way harmonic
evaluation really works . . . to which correctness is very sensitive.

The sonority hierarchy is hard-coded again, once forwards and once
backwards.



ITB syllabification – the OT account (2)

In chap. 8, the OT account that really (or not) does the same as
the algorithm: Con is:

Ons, Parse, *P/�, *M/a
� *M/� � *M/i � . . . � *M/v � . . . � *M/t
� −Cod, *P/t . . .� . . . *P/a

And there are non-trivial definitions embedded in the way harmonic
evaluation really works . . . to which correctness is very sensitive.

The sonority hierarchy is hard-coded again, once forwards and once
backwards.



ITB syllabification – the OT account (2)

In chap. 8, the OT account that really (or not) does the same as
the algorithm: Con is:

Ons, Parse, *P/�, *M/a
� *M/� � *M/i � . . . � *M/v � . . . � *M/t
� −Cod, *P/t . . .� . . . *P/a

And there are non-trivial definitions embedded in the way harmonic
evaluation really works . . . to which correctness is very sensitive.

The sonority hierarchy is hard-coded again, once forwards and once
backwards.



Lessons for a pragmatic phonologist?

I Locally, constraints may well be easier to comprehend than
re-write rules. The local interaction of two constraints is also
easy.

I Globally, writing down a correct OT grammar is, um,
challenging.

I Constraints are not very compositional.

Do we need OT to make use of harmony?



Forward to the past

If you don’t like doubly looped algorithms with hard-wired sonority
scales, how about the following account of ITB . . .

Let x � y mean x is more sonorous than y .

Given the input string #−s−1 s−2 . . . s−n #−, apply (repeating each
from left before moving on):

1. x−y−z− → xCyVz− if x ≺ y � z
‘a sonority peak must be a syllable peak’

2. x−y−zC → xCyVzC if x ≺ y
‘a pre-consonantal sonority rise makes a syllable’

3. x−y− → xCyV (x 6= #) ‘fill up the rest with CV’

4. x− → xC ‘anything left over is a consonant (onset
initially, coda otherwise)’

E.g. txznakkw
1→ txz.nakkw

2→ t.xz.nakkw
3→ t.xz.na.kkw

4→
.txz.na.kkw



Forward to the past

If you don’t like doubly looped algorithms with hard-wired sonority
scales, how about the following account of ITB . . .

Let x � y mean x is more sonorous than y .

Given the input string #−s−1 s−2 . . . s−n #−, apply (repeating each
from left before moving on):

1. x−y−z− → xCyVz− if x ≺ y � z
‘a sonority peak must be a syllable peak’

2. x−y−zC → xCyVzC if x ≺ y
‘a pre-consonantal sonority rise makes a syllable’

3. x−y− → xCyV (x 6= #) ‘fill up the rest with CV’

4. x− → xC ‘anything left over is a consonant (onset
initially, coda otherwise)’

E.g. txznakkw
1→ txz.nakkw

2→ t.xz.nakkw
3→ t.xz.na.kkw

4→
.txz.na.kkw



Forward to the past

If you don’t like doubly looped algorithms with hard-wired sonority
scales, how about the following account of ITB . . .

Let x � y mean x is more sonorous than y .

Given the input string #−s−1 s−2 . . . s−n #−, apply (repeating each
from left before moving on):

1. x−y−z− → xCyVz− if x ≺ y � z
‘a sonority peak must be a syllable peak’

2. x−y−zC → xCyVzC if x ≺ y
‘a pre-consonantal sonority rise makes a syllable’

3. x−y− → xCyV (x 6= #) ‘fill up the rest with CV’

4. x− → xC ‘anything left over is a consonant (onset
initially, coda otherwise)’

E.g. txznakkw
1→ txz.nakkw

2→ t.xz.nakkw
3→ t.xz.na.kkw

4→
.txz.na.kkw



Forward to the past

If you don’t like doubly looped algorithms with hard-wired sonority
scales, how about the following account of ITB . . .

Let x � y mean x is more sonorous than y .

Given the input string #−s−1 s−2 . . . s−n #−, apply (repeating each
from left before moving on):

1. x−y−z− → xCyVz− if x ≺ y � z
‘a sonority peak must be a syllable peak’

2. x−y−zC → xCyVzC if x ≺ y
‘a pre-consonantal sonority rise makes a syllable’

3. x−y− → xCyV (x 6= #) ‘fill up the rest with CV’

4. x− → xC ‘anything left over is a consonant (onset
initially, coda otherwise)’

E.g. txznakkw
1→ txz.nakkw

2→ t.xz.nakkw
3→ t.xz.na.kkw

4→
.txz.na.kkw



Forward to the past

If you don’t like doubly looped algorithms with hard-wired sonority
scales, how about the following account of ITB . . .

Let x � y mean x is more sonorous than y .

Given the input string #−s−1 s−2 . . . s−n #−, apply (repeating each
from left before moving on):

1. x−y−z− → xCyVz− if x ≺ y � z
‘a sonority peak must be a syllable peak’

2. x−y−zC → xCyVzC if x ≺ y
‘a pre-consonantal sonority rise makes a syllable’

3. x−y− → xCyV (x 6= #) ‘fill up the rest with CV’

4. x− → xC ‘anything left over is a consonant (onset
initially, coda otherwise)’

E.g. txznakkw
1→ txz.nakkw

2→ t.xz.nakkw
3→ t.xz.na.kkw

4→
.txz.na.kkw



Forward to the past

If you don’t like doubly looped algorithms with hard-wired sonority
scales, how about the following account of ITB . . .

Let x � y mean x is more sonorous than y .

Given the input string #−s−1 s−2 . . . s−n #−, apply (repeating each
from left before moving on):

1. x−y−z− → xCyVz− if x ≺ y � z
‘a sonority peak must be a syllable peak’

2. x−y−zC → xCyVzC if x ≺ y
‘a pre-consonantal sonority rise makes a syllable’

3. x−y− → xCyV (x 6= #) ‘fill up the rest with CV’

4. x− → xC ‘anything left over is a consonant (onset
initially, coda otherwise)’

E.g. txznakkw
1→ txz.nakkw

2→ t.xz.nakkw
3→ t.xz.na.kkw

4→
.txz.na.kkw



Re-write rules with more notational freedom

How nice is the just given account?

− Three rules (plus codas) rather than two constraints (plus
codas)

− With some notation

+ but no external baggage, and

+ no hard-wired sonority hierarchy, only comparison

+ that is strictly local

+ with deterministic generation of the answer.

+ Also can be done on-line with bounded look-ahead (never
need to look beyond the next sonority peak, so no more than
7 segments ahead, usually fewer).



Exploring changes

Neither the DEA, nor PrS’s OT version†, nor mine quite accords
with reality. For example:

DEA PrS here

bddl *.bd.dl .bd.dl .bd.dl

raymmGi .ra.ymm.Gi ?
.ra.ymm.Gi
*.ray.mm.Gi

.ra.ymm.Gi

!itbdrin *.i.tbd.rin ?
*.i.tbd.rin
.it.bd.rin

*.i.tbd.rin

†PrS’s OT account is not the same as the (modified) DEA they present



Summary

You don’t have to do OT to exploit harmony.

‘Choosing the right notation is half the battle’.

Is OT always the right notation?

Maybe you sometimes get more insight from something simpler . . .



Dell, F. and M. Elmedlaoui (1985).
Syllabic consonants and syllabification in Imdlawn Tashlhiyt

Berber.
J. African Languages and Linguistics 7, 105–130.

Eisner, J. (1997).
Efficient generation in primitive Optimality Theory.
In Proc. 35th Annual Meeting of the ACL, pp. 313–320.

Elenbaas, N. (1999).
A unified account of binary and ternary stress.
Ph. D. thesis, University of Utrecht.

Frank, R. and G. Satta (1998).
Optimality theory and the generative complexity of constraint

violability.
Computational Linguistics 24(2), 307–316.

Karttunen, L. (2006).
The insufficiency of paper-and-pencil linguistics: the case of

finnish prosody.



In M. Butt, M. Dalrymple, and T. H. King (Eds.), In Intelligent
Linguistic Architectures: Variations on themes by Ronald M.
Kaplan, pp. 287–300. CSLI Publications.

Kiparsky, P. (2003).
Finnish noun inflection.
In D. Nelson and S. Manninen (Eds.), Generative Approaches to

Finnic Linguistics. CSLI.

Prince, A. and P. Smolensky (1993).
Optimality theory: Constraint interaction in generative

grammar.
Technical Report 2, Rutgers University Center for Cognitive

Science.


	References

