Julian Bradfield

University of Edinburgh

!Xoon

!Xoon or Taa is a Tuu Khoisan language with many clicks. One interesting phenonemon is the variation of first-mora /a/ quality by the second-mora vowel, place of the initial click, and click accompaniment; this has been used to argue for novel phonology [2], gang effects [5], and in the last OCP, lack of gang effects [3]. The phenomenon is called 'A-raising' after [8]. Analysis is bedevilled by very limited data; this presentation reports on results from new audio data.

Basic !Xoon phonology

Word-initial consonants include:
 -clicks at five places ©, I, !, II, \neq

 $\begin{array}{llll}(\mathrm{g}) \neq \mathrm{q} & (\mathrm{g}) \neq \mathrm{q}^{\prime} & (\mathrm{g}) \neq \mathrm{qh}\left[\neq \mathrm{q}^{\mathrm{h}}\right] & (\mathrm{g}) \neq \mathrm{q}^{\prime}\left[\neq \mathrm{q}^{\mathrm{x}^{\prime}}\right] \quad \text { (g) } \neq \times[\neq \chi]\end{array}$
 (g) $\ddagger \mathrm{hh}[\neq \mathrm{h}] \quad(\mathrm{g}) \neq{ }^{\prime \prime}[\neq \mathrm{P}]$
 - many pulmonic consonants
 Most content lexemes are $\mathrm{C}_{1} \mathrm{~V}_{1}\left(\mathrm{C}_{2}\right) \mathrm{V}_{2} . \mathrm{C}_{1}$ is an initial consonant. C_{2} is weak: b
 $[b / v], w, r / I, y[j]$, ny [n]. V V_{1} can have several voice qualities.
 V_{2} is $\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}$, and may be nasalized an
 What about V_{1} ?
 V_{1} ranges over (and between) a, e, i, o, u, partially driven by V_{2}.
 - traditional description: it's a, o and undergoes assimilation to V_{2} and other segments
 - currently favoured description: it's underspecified A, O and fills in features from V_{2} and other segments

'A-raising'

is the traditional [8] name for its behaviour, described as
a assimilates in height to V_{2}

- fully, when C_{1} has a 'front' click I, \ddagger and C_{1} is not a complex with q, \times and C_{2} is empty;
- partly, when C_{1} is a front click and C_{2} is palatal or dental

Many analyses

- [8] underlying a with SPE-style rules
- [6] underlying i, e, with lowering.
- [6] underlying i, e, with lowering.
- [7] opted for underspecified underlyin
- [2] SPE plus 'concurrent phonemes
- [5] gradient subfeatural phonology
- [3] element-theory.

Lots of new data!

[4] is six hours of high quality recordings of carefully spoken Bible translation in West !Xoon, by men and women of unknown ages. We have analysed 25% of the data by auditory impression and acoustic formant (Praat, [1]) measurement. So what's going on in current !Xoon? It's messy
To summarize, we'll use $[\mathrm{e}-3-\partial-9]$ to indicate degrees of raising or $[\mathfrak{x}-\varepsilon-\mathrm{e}]$ when To summarize, we
especially fronted

V_{1} after 'back' clicks 0, !, ||

[8] actually claims some raising to [æ] in $\mathrm{CV}_{1} \mathrm{i}$.
We find:

- no raising in most such contexts; but - speaker-variable raising to [9$]$, [e] or even [i] in ||'ai, Ilhhai, \|qhai

F3 ||'ai-sa [||iisa]

V_{1} after 'front' clicks I, \neq

Supposed to be full raising, or part after uvular complexes or with non-high C_{2} present. We find: - inter- and intra-speaker variable raising ([9, 3, \#ै - inter- and intra-speaker variable raising ($[9,3,3$,
i] in non-uvular contexts for -ai, but

- full raising is only in \ddagger "ai only in some speakers
- mostly part raising ([x] to [$[\varepsilon]$) in - $\mathrm{aC}_{2} \mathrm{i}$ - part raising ([ə]) in uvular -ai contexts

Long accompaniments

- The clicks with hh, " $[\mathrm{h}, \mathrm{Q}]$ account for most of the expected full raising tokens, and also show some raising in 'back' contacts where the standard account expects none.
The $[\mathrm{h}, \mathrm{\imath}]$ in these sounds is long ($100-200 \mathrm{~ms}$), so it is plausible that they simply block any effect C_{1} has, resulting in simple ai \rightarrow [ii] (or $\mathrm{Ai} \rightarrow$ [ii]).
\bullet Equally long uvular $\times[\chi]$ accompaniment does block raising.

A-raising??

- So far, not a single example of simple classic full raising such as lai to [|ii] - only after long accompaniments.
- There are examples of, e.g., $\neq \mathrm{ae} \rightarrow[\ddagger \mathrm{ee}$
- Four more hours to analyse, but
- It looks much more variable and gradient than described in [8].
- Could this be (a) dialect difference ([8] is eastern dialect, ours is western)? - Could it be language change? (Ca. 2000-3000 speakers now) - Or could it be that Traill over-generalized from limited data?

Phonology and/or phonetics?

- There seems to be a lot of gradience
- but also some categorical change.
-What is an underspecified A anyway?
- And what is its realization?
- Can [5] be adjusted to account for this data rather than Traill's?
- And can element theory do it?

To do ...

- rest of data

- more numerical analysis

References

[1] Paul Boersma and David Weenink. Praat: doing phonetics by computer, 2022 Version 6.3.03.
[2] Julian Bradfield. Clicks, concurrency and Khoisan. Phonology, 31(1):1-49, 2014
[3] Julian Bradfield and Shanti Ulfsbjorninn. Mirage of gradience, 2023. Talk at OCP20.
[4] GRN. !Xoon language [etc.]. https://globalrecordings. net/en/language/ nmn, 2022.
[5] Florian Lionnet. Phonological teamwork in Kalahari Basin languages. Africana Linguistica, 24:75-97, 2018.
[6] Amanda L. Miller-Ockhuizen. The Phonetics and Phonology of Gutturals: a Case Study from Jul'hoansi. Routledge, 2003.
[7] Hirosi Nakagawa. Phonotactics of disyllabic lexical morphemes in G|ui. Working Papers in Corpus-Based Linguistics and Language Education, 5:23--31, 2010.
[8] Anthony Traill. Phonetic and Phonological Studies of !Xóõ Bushman. Buske, Hamburg, 1985.

