
J Comput Virol (2010) 6:105–114
DOI 10.1007/s11416-009-0137-1

ORIGINAL PAPER

A general definition of malware

Simon Kramer · Julian C. Bradfield

Received: 1 July 2008 / Accepted: 9 September 2009 / Published online: 29 September 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract We propose a general, formal definition of the
concept of malware (malicious software) as a single sen-
tence in the language of a certain modal logic. Our definition
is general thanks to its abstract formulation, which, being
abstract, is independent of—but nonetheless generally appli-
cable to—the manifold concrete manifestations of malware.
From our formulation of malware, we derive equally gen-
eral and formal definitions of benware (benign software),
anti-malware (“antibodies” against malware), and medware
(medical software or “medicine” for affected software).
We provide theoretical tools and practical techniques for the
detection, comparison, and classification of malware and its
derivatives. Our general defining principle is causation of
(in)correctness.

1 Introduction

In [1], the definition of the concept of malware (for malicious
software) is posed as a difficult open problem in computer
virology. This paper, which is an extended version of [2], pro-
poses a simple, general, and formal solution to that problem

Simon Kramer’s contribution was initiated in the Comète group at
Ecole Polytechnique and INRIA (France), and completed under Grant
P 08742 from the Japan Society for the Promotion of Science in the
Laboratory of Cryptography and Information Security at the
University of Tsukuba (Japan). Guillaume Bonfante and Jean-Yves
Marion, LORIA, Nancy, France have been invited as guest editors for
this paper.

S. Kramer (B)
Ecole Polytechnique and INRIA, Palaiseau, France
e-mail: simon.kramer@a3.epfl.ch

J. C. Bradfield
University of Edinburgh, Edinburgh, UK
e-mail: jcb@inf.ed.ac.uk

as a single sentence in the language of a modal fixpoint logic.
Such a single-sentence definition was opined to be difficult
to come up with in [3, p. 19]. Our paper also proposes a
formal definition of the concepts of benware (for benign
software), anti-malware (“antibodies” against malware), and
medware (for medical software, or “medicine” for affected
software) as derivatives of the concept of malware in the
sense of being defined in terms of malware. Our formal def-
initions are related to the practical definitions of [4], which
we compare to ours in Sect. 2.2.

Intuitively, malware is software that harmfully attacks
other software1 (cf. [5], [6], [7], and [8]), where to harmfully
attack can be observed to mean to cause the actual behav-
iour to differ from the intended behaviour. Unfortunately,
intended behaviour is rarely defined, i.e., stated explicitly as
such. Rather, such behaviour is usually painfully discovered
a posteriori, i.e., in the aftermath of an attack, as the lesson
learnt from the damage caused by the attack. The difference
between the actual and the intended behaviour of software
systems being defined and experienced as incorrectness in
verification2 and validation,3 respectively, the defining char-
acteristic of malware must be (direct or indirect) causation
of incorrectness. Hence, any (formal) definition of the con-
cept of malware depends on the definition of the concept of
software system correctness. Logically speaking, a harmful
attack on a software system is nothing else than the falsi-
fication of a necessary condition for the correctness of that

1 and possibly also indirectly hardware to the extent to which hardware
is controllable by (affected) driver software.
2 The process of checking compliance with the system’s specification.
This process is possibly proof-based.
3 The necessarily test-based process of checking compliance with the
users’ needs. (The problem of whether or not users’ needs are captured
by specifications is non-mathematical.)

123

106 S. Kramer, J. C. Bradfield

system. Hence, pieces of malware are falsifiers of the cor-
rectness hypothesis made de facto by the shipment of the
software system (cf. Popper’s critical rationalism in philos-
ophy and duty of care in law).

The correctness of a software system s can be expressed
in at least three different styles:

1. model-theoretically, as the assertion that

(a) s � ϕ, pronounced “s satisfies ϕ”, where ϕ is a
logical formula (the specification) expressing the
desired correctness criterion (possibly a finite con-
junction of necessary sub-criteria)

(b) s ≡ s′, pronounced “s is equivalent to s′”, where s′
is a specification term that realises more abstractly
(by focusing on the what) what the implementation
s is intended to realise more concretely (by focusing
on the how)

2. proof -theoretically, as the assertion that Ax(s) � ϕ, pro-
nounced “ϕ (the specification) is deducible from the axi-
omatisation of s”, where an axiomatisation of a software
system s is a set of logical formulae adequately capturing
the meaning of s.

Remark 1 Style 1.a (also known as model-checking [9]) and
Style 1.b (also known as equivalence-checking4 [10]) can
sometimes be related by:

s ≡ s′ iff for allϕ, s � ϕ if and only if s′ � ϕ.

Style 1 and Style 2 (also known as theorem-proving [11,12])
can sometimes be related by the adequacy (soundness and
completeness) of the axiomatisation:

for allϕ,Ax(s) � ϕ if and only if s � ϕ.

Our formal definition of the concept of malware abstracts
from—and thus is independent of—how correctness is estab-
lished or violated; it is just decided by that either is the
case—by means of software verification and/or validation.
Our definition is therefore independent of the manifold con-
crete manifestations of malware, which only affect the way
by which correctness is violated (e.g., via polymorphic and
metamorphic code [3, Sects. 7.5 and 7.6, respectively]).
Hence given a software system s, we shall designate by
correct(s) the abstract fact that s is correct. Concretely, when
there is a specification of some form (e.g., a formulaφ, a term
s′, or an intuitive judgement in the engineer’s mind) for s:

– for model-checking,

correct(s) :iff s � ϕ

4 or also as refinement-checking when only the intrinsic pre-order of
the equivalence is used.

– for equivalence-checking,

correct(s) :iff s ≡ s′

– for theorem-proving,

correct(s) :iff Ax(s) � ϕ

– and otherwise,

correct(s) :iff s is intuitively considered correct,

where “:iff” abbreviates “by definition, if and only if”.
We stress that the logical strength and computational

complexity of correct may vary with the chosen notion of
correctness. Formally, correct may even be undecidable on
a chosen domain of software systems, e.g., when already
correct(s) is undecidable for some s in the domain. How-
ever, the pragmatic stance of deciding correct(s) by vig-
our of the intuition that security experts can acquire from
gathering practical experience with s, is of course possi-
ble for any s. Hence empirically, correct can be decided
on a given domain by harnessing the experience of security
experts in that domain, e.g., by looking-up a table in which
the experts record their decision about correct(s) for each s
in the domain. Theoretically speaking, correct is decidable
on a given (finite) domain (in the look-up time of the table)
with an oracle for correct(s) for each s in the domain. In
the ideal case of proof-carrying code [13], a software system
comes even with its own, formal proof of correctness (w.r.t. a
given specification), amenable to fully automated checking.

Correctness necessarily being formulated w.r.t. an under-
lying specification,5 the formal definition of malware is nec-
essarily conditioned on that specification. Consequently, a
software system s′ harming another software system s fails
to qualify formally as malware if and only if the intention
of the proper functioning of s is improperly, i.e., wrongly
(mal-specification) or incompletely (under-specification),
specified. From an engineer’s perspective, mal-specification
is an unsuccessful attempt, whereas under-specification is
an unattempted success. However from a user’s perspec-
tive, mal- and under-specification are indistinguishable in
the sense of being equally bad failures of protection against
harmful effects. (For example, the disjunction of both is a nec-
essary condition for Trojanisation, i.e., the intended addition
of improper functionality to a software system by a piece
of malware—a Trojan horse.) From a user’s perspective,
all that matters is effect, not intention. In particular, mali-
ciousness is immaterial. Note that failures due to mal- and/or

5 expressed by a formula or term in the formal case, and by a natu-
ral language proposition, or even an unexpressed intuition, whose truth
values we assume recorded as a Boolean value, in the informal case.

123

A general definition of malware 107

under-specification are the fault (the psychological failure)
of the human specifier and not a fault (a logical failure) of our
approach. Any software specification that is improper in the
sense of allowing for functionality that is both orthogonal6

to the correctness criterion and undesirable (side-)effects the
creation of a trapdoor for dysfunctionality. Hence, a major
engineering challenge is to make exhaustively explicit the
intention of proper software functionality.

Malware causing incorrectness to a software system s,
malware must transform s (i.e., violate the integrity of the
code of s) and/or the environment (e.g., the operating system,
other programs and data, the memory and/or file system,
etc.)7 of s, which for the sake of faithful modelling we assume
to be included in s. Hence, pieces of malware are higher-order
programs (i.e., source or binary malcode) or, more generally,
higher-order software systems (e.g., botnets [14, Chap. 11]),
in the sense of taking as input other programs or, more gen-
erally, other software systems, which they transform [15].
Thus, we shall designate the transformation (both the action
and the result) of a software system s (but not of the corre-
sponding predicate correct) by a piece of malware s′ by the
functional application s′(s).8

2 Malware and its derivatives

2.1 Auxiliary definitions

Definition 1 (Damaging software) A software system s
damages a correct software system s′ by definition if and
only if s (directly or indirectly) causes incorrectness to s′.
Formally,

Observe that causation of software incorrectness is the dam-
aging affection of a priori correct software with incorrect-
ness via functional application; and that damaging software

6 i.e., logically incomparable (unrelated by logical implication).
7 e.g. in [16], a virus is defined as a program that modifies other pro-
grams to include a possibly evolved copy of itself, and in [17], as a
program that alters the operating system.
8 Modelling transformation as function application is result-oriented.
A process-oriented alternative is modelling transformation as parallel
composition in the style of process algebra [10].

is defined to be so already due to its damaging potential. This
potential can be practically tested in a sandbox of software
systems (i.e., an isolated computer network) and/or in a sand-
box within a software system (i.e., a virtual machine), as com-
monly done by anti-malware research laboratories and pieces
of anti-malware, respectively (cf. [18] and [3, Sects. 11.4 and
11.13]).

Definition 2 (Repairing software) A software system s
repairs an incorrect software system s′ by definition if and
only if s (directly or indirectly) causes correctness to s′.
Formally,

Observe that repairing software is the contrary—not the
contradictory (via negation)—of damaging software. Hence,
analogous observations to those about Definition 1 apply
here.

We stress that the properties of the relations damages◦
and repairs◦ depend on the properties of the predicate cor-
rect, which in turn depend on the underlying specifications.
In particular, in specific cases it is possible to reduce indi-
rect to direct damage by strengthening correctness to catch
the specific indirection. We also stress that our (linear) defini-
tion of indirect causation is just an example, (e.g., non-linear)
redefinitions are possible. The relations damages◦ and
repairs◦ are plug-ins to our framework.

Definition 3 (Malware Logic) Let M designate a count-
able set of propositional variables M , and let

� � φ ::= M
∣
∣ ¬φ ∣

∣ φ ∧ φ ∣
∣ ∀D(φ)

∣
∣ ∀R(φ)

∣
∣ νM(φ)

designate the language � of MalLog where all free occur-
rences of M in φ of νM(φ) are assumed to occur within an
even number of occurrences of ¬ to guarantee the existence
of (greatest) fixpoints (expressed by νM(φ)) [19]. Then,
given the (or only some finite or infinite sub-)class S of
software systems s (not just pieces of software), and an inter-
pretation �·� : M → 2S of propositional variables, the
interpretation ‖ · ‖�·� : � → 2S of MalLog-propositions is:

‖M‖�·� := �M�

‖¬φ‖�·� := S \ ‖φ‖�·�
‖φ ∧ φ′‖�·� := ‖φ‖�·� ∩ ‖φ′‖�·�
‖∀D(φ)‖�·� := {s ∈ S | for all s′ ∈ S , if s damages◦ s′

then s′ ∈ ‖φ‖�·�}

123

108 S. Kramer, J. C. Bradfield

‖∀R(φ)‖�·� := {s ∈ S | for all s′ ∈ S , if s repairs◦ s′
then s′ ∈ ‖φ‖�·�}

‖νM(φ)‖�·� :=
⋃

{ S ⊆ S | S ⊆ ‖φ‖�·�[M →S] },
where �·�[M →S] maps M to S and otherwise agrees with �·�.

Further, φ∨φ′ := ¬(¬φ∧¬φ′), � := φ∨¬φ, ⊥ := ¬�,
φ → φ′ := ¬φ ∨ φ′, φ ↔ φ′ := (φ → φ′) ∧ (φ′ → φ),
∃D(φ) := ¬∀D(¬φ), ∃R(φ) := ¬∀R(¬φ), and, notably,
µM(φ(M)) := ¬νM(¬φ(¬M)). Finally,

– for all s ∈ S and φ ∈ �, s |� φ :iff s ∈ ‖φ‖�·�9

– for all φ ∈ �, |� φ :iff for all s ∈ S , s |� φ

– for all φ, φ′ ∈ �,

– φ ⇒ φ′ :iff for all s ∈ S , if s |� φ then s |� φ′
– φ ⇔ φ′ :iff φ ⇒ φ′ and φ′ ⇒ φ.

Notice that MalLog lacks atomic propositions (but not
propositional variables). Note also that in general, indirect
damage and repair are not definable in terms of their direct
counterparts within MalLog (e.g., with a fixpoint operator)
because of the involved indirection introduced by the appli-
cation operation in their definition.

We pronounce ∀D(φ) as “necessarily through damage that
φ”, ∀R(φ) as “necessarily through repair that φ”, ∃D(φ)
as “possibly through damage that φ”, ∃R(φ) as “possibly
through repair that φ”, νM(φ) as “the greatest fixpoint of
the interpretation of the property M such that φ”, µM(φ)
as “the least fixpoint of the interpretation of the property M
such that φ”, s |� φ as “s satisfies φ”, |� φ as “φ is valid”,
φ ⇒ φ′ as “φ′ is a logical consequence of φ”, and φ ⇔ φ′
as “φ is logically equivalent to φ”.

In addition to the present modalities, we could conceive
corresponding converse modalities defined in terms of the
converses of the present (active) accessibility relations: the
active forms “damages” and “repairs” would be transformed
into the passive forms “damaged by” and “repaired by”,
respectively.10 This victim view, would focus on the (pas-
sive) susceptibility to damage and repair of software systems
rather than on their (active) damaging or repairing potential.

Fact 1 1. |� φ → φ′ iff φ ⇒ φ′ (By expansion of the
definitions.)

2. |� φ ↔ φ′ iff φ ⇔ φ′
3. MalLog is a member of the family of µ-calculi over

the modal system K2, which is characterised by the
laws of propositional logic and the modal laws

9 The reader is invited not to confuse the satisfaction relation � used
for the property-based definition of software correctness with the one
|� of MalLog used for the definition of malware-based concepts on top
of software correctness.
10 in analogy to temporal logic with future and past (converse future)
modalities.

|� �(φ → φ′) → (�φ → �φ′) and “if |� φ then
|� �φ”, where � ∈ {∀D,∀R}.
(As stressed before, the properties of the relations
damages◦ and repairs◦, and thus those of the modali-
ties ∀D and ∀R, depend on the predicate correct, whose
properties in turn depend on the underlying specifica-
tions. Hence, no more constraints than those of the modal
system K, i.e., none, can generally be assumed to hold for
∀D and ∀R. Note also that since MalLog lacks atomic
propositions, satisfiability for MalLog is definable with
a mere first-order existential quantifier. Whereas satis-
fiability for a “full” member of the family of µ-calculi
is definable only with a second-order quantifier, namely
one over propositional valuations, i.e., functions from
atomic propositions to those sets of points where these
propositions are true. See [19] for details.)

Corollary 1 1. If damages◦ and repairs◦ are decidable on
a given software systems domain then the satisfiability
problem for MalLog, i.e., “Given φ ∈ �, is there s ∈ S
s.t. s |� φ?”, (and thus also the model-checking prob-
lem, i.e., “Given φ ∈ � and s ∈ S , is it the case that
s |� φ?”) is decidable.

2. MalLog has the finite-model property, i.e., for all φ ∈ �,
if φ is satisfiable then φ is satisfiable in a finite model.

3. MalLog is axiomatisable by the following Hilbert-style
proof-system:

(a) the axioms and rules of the modal system K for each
∀D and ∀R

(b) the axiom
φ(µM(φ(M))) → µM(φ(M))

(c) the rule
φ(φ′) → φ′

µM(φ(M)) → φ′ .

Remark 2 1. In computer science, the most popular modal
µ-calculus is one over Kn where n ∈ N and accessibil-
ity is given by a family of n action-labelled transition
relations [19].

2. MalLog, being a modalµ-calculus, is related to monadic
second-order logic, of which modal µ-calculi are bisi-
mulation-invariant fragments [19, Sect. 8.1], and to the
theory of non-well-founded sets [20].

2.2 Main definitions

Definition 4 (Malware) A software system s is malware
by definition if and only if s damages non-damaging soft-
ware systems (the civil population so to say) or11 software

11 This “or” is implicit in the second “if—then” of Condition 1
∃D(∀D(M)) ⇔ ∃D(∀D(⊥) ∨ ∀D(M)).

123

A general definition of malware 109

Table 1 Enumeration of safe software systems (safe SWS)

(a) non-damaging SWS (CP)
(b) SWS that damage only SWS that damage CP (ATF1)
(c) SWS that damage only SWS that damage ATF1 (ATF2)
(d) SWS that damage only SWS that damage ATF2 (ATF3)
(e) etc.

systems that damage malware (the anti-terror force so to say).
Formally,

Recall that s ∈ S , i.e., the property of being a piece of mal-
ware is w.r.t. a certain context or environment S of software
systems (possibly subject to certain closure conditions, e.g.,
closure under system composition).

The definition says that s is in the greatest fixpoint of the
interpretation of the property M such that

if s satisfies M (i.e., s is in the interpretation of M)
then s satisfies ∃D(∀D(M))—which in turn says (the
reader is invited to expand the operator definitions in
case of doubt) that there is s′ such that s damages s′
and for all s′′, if s′ damages s′′ then s′′ satisfies M .

(1)

Observe that all (=1) free occurrences of M in ∃D(∀D(M))
of νM(∃D(∀D(M))) occur within an even (=2) number of
occurrences of ¬. Hence, our definition is formally well-
defined.

This compact co-inductive definition has the following
informal iterative paraphrase:

– Everything is malware (better be safe than sorry);
– except for (throw out what is clearly safe) the software

systems enumerated in Table 1.

In contrast, and for a better understanding (especially of
fixpoint operators), consider the opposite (in fact the contra-
dictory) of malware:

Definition 5 (Benware) A software system s is benware by
definition if and only if s is non-damaging or damages only
software systems that damage benware. Formally,

ben(s) :iff s |� µM(∀D(∃D(M))).

The definition says that s is in the least fixpoint of the inter-
pretation of the property M such that

if s satisfies ∀D(∃D(M))—which in turn says that
for all s′, if s damages s′ then there is s′′ such that
s′ damages s′′ and s′′ satisfies M—then s satisfies M .

This inductive definition has the following informal iterative
paraphrase:

– Nothing is benware (again, better be safe than sorry);
– except for (throw in what is clearly safe) the software

systems enumerated in Table 1.

Benware is (and intuitively must be) the contradictory of
malware because

Fact 2 ben(s) if and only if not mal(s),

as can be seen by flipping negation symbols. The difference
between the least and the greatest fixpoint is that the great-
est—as opposed to the least—allows loops in the damage
relation (mutual damage).

Figure 1 depicts the partition of the class of software sys-
tems into malware and benware, which fight each other via
functional application. Shape nesting symbolises set inclu-
sion. Solid (dashed) shapes symbolise disjoint (possibly
overlapping) sets. Arrows symbolise potential damage. And
grey-shading symbolises software that potentially damages
itself (and thus potentially wastes resources, which is consid-
ered to be bad). Notice that the possibility for the malware
sets MW0, MW1, MW2, MW3, . . . of being overlapping
implies the possibility of potential mutual damage.

Observe that we use a greatest fixpoint at the object-level
of a modal language to define malware (including computer
viruses), whereas [21] use least fixpoints at the meta-level
of an equational language to define computer viruses. The
framework of [21] is bottom-up: it focuses on how com-
puter viruses can be constructed. In contrast, our frame-
work is top-down: it focuses on what malware effects but
abstracts from how malware actually does so. We believe that
bottom-up and top-down approaches are complementary:
anti-malware measures may well be implemented in the form
of counter-Trojans, counter-viruses, and/or counter-worms
[3, Sect. 14.6])! Finally, observe that our formal defini-
tion is, in contrast to [4]’s practical one, not formulated in
terms of the maliciousness of the cause of its harmful effects
(dysfunction due to harmful intention) but only in terms of
the harmfulness of its effects (dysfunction due to formal

Benware

Malware

ATF3

MW2

ATF2

MW1

ATF1

MW0

CP

MW3

Fig. 1 Software systems

123

110 S. Kramer, J. C. Bradfield

damage12). Malicious intention, as opposed to its harmful
effect, is not generally directly observable. We believe this
causal indifference to be an advantage of our definition due
to the resulting gain in generality and thus applicability.
For example, our definition should even be applicable to the
biological domain with suitable definitions of correctness
(cf. the predicate correct) for biological systems (and their
chemical sub-systems) such as bacteria, biological viruses,
prions, and the like. Possible biological notions of correctness
could be liveness (the existence of a metabolism), healthiness
(the existence of a normal metabolism), reproductiveness,
etc. See [22] for a review of biological models that, due to
their computational nature, are suitable for our approach.

Definition 6 (Anti-malware) A software system s is anti-
malware by definition if and only if s damages no ben-
ware (safety)13 and s neutralises14 malware (effectiveness).
Formally,

antimal(s) :iff s |� ¬∃D(BEN) and there is s′ s.t.
mal(s′) and not mal(s(s′)),

where BEN := µM(∀D(∃D(M))).

Observations analogous to those about software incorrect-
ness under Definition 1 can be made about malware neu-
tralisation here. Additionally, observe that the concept of
anti-malware is defined with rather than within MalLog.
Neutralisation transcends damage.

Definition 7 (Medware) A software system s is medware
by definition if and only if s damages no benware (safety)
and s repairs benware (effectiveness). Formally,

med(s) :iff s |� ¬∃D(BEN) ∧ ∃R(BEN).

Fact 3 1. Anti-malware is benware.
(Anti-malware, being non-damaging to benware, is not
malware.)

2. Malware may damage anti-malware.
(Damaging anti-malware is part of the anti-
terror force. Non-damaging anti-malware is part of the
civil population15. See Figure 1.)

3. Anti-malware does not necessarily damage malware.
(Neutralisation does not imply formal damage in case of
malware mal- and/or under-specification.)

12 We stress that it is not the effect on a software system s as such (such
as the formatting of a hard disk) but formal damage, i.e., the effect on
the truth of the predicate correct (defining [the circumstances of the]
harmfulness [of the formatting]) that matters.
13 no friendly fire.
14 Damage is insufficient!
15 non-violent self-defence.

4. Medware is benware.
(Medware, being non-damaging to benware, is not mal-
ware.)

5. Malware may damage medware.16

(Damaging medware is the medical staff of the anti-ter-
ror force; and non-damaging medware is the medical
staff of the civil population.)

6. Medware repairs no malware.17

(Otherwise medware would indirectly damage benware,
yet by definition medware damages no benware—not
directly nor indirectly.)

7. Malware may cause benware to become malware.18

(By definition, malware transforms software systems!)

3 Application

3.1 Scope

The manifold concrete manifestations of malware either are
self-replicating, in which case affection is self-sufficient, or
are in need of a host program for their replication, in which
case affection needs infection. (See [23] for a classification of
different degrees of hosted replication.) By definition, self-
replicating manifestations of malware are called worms (cf.
[24] for an informal taxonomy), manifestations of malware
that need a host for their replication are called viruses (cf. [15]
and [21] for formal classifications), and malware-carrying
(e.g., a rootkit payload [3, Sect. 2.3.16]) pieces of malware
are called Trojan horses [3, Sect. 2.3.4]. Since our definition
of malware is indifferent to how affection takes place but
is heedful to that it takes place to the extent that affection
implies incorrectness, our definition exhausts all manifesta-
tions of malware on the condition that the specification of
software correctness be exhaustive.

3.2 Tasks, tools, and techniques

MalLog is a theoretical tool for the practical detection of mal-
ware in software systems by means of model-checking. Two
other theoretical tools related to MalLog are ordering rela-
tions for the comparison of these systems by means of equiva-
lence- and refinement-checking, and characteristic formulae
for their classification (including their naming).

When defining ordering relations on software systems,
we can choose a declarative formulation in terms of what
can be said about the systems in a given language (here �),
or an operational formulation in terms of how the systems

16 The Red Cross needs body guards.
17 Medware is, as opposed to the Red Cross, not neutral.
18 defection to the dark side of the force, or, according to [4], contam-
ination.

123

A general definition of malware 111

behave (here behaving means damaging and/or repairing).
However, the two formulations are ultimately equivalent in
the sense of Theorem 1.

Definition 8 (Comparing software systems with
orderings)

– For all s1, s2 ∈ S ,

– s2 refines s1 w.r.t. �, written s1 �� s2, :iff for all
φ ∈ �, if s1 |� φ then s2 |� φ

– s2 is equivalent to s1 w.r.t. �, written s1 ≡� s2, :iff
s1 �� s2 and s2 �� s1

– s2 can simulate s1, written s1 � s2, :iff for all s′
1 ∈ S ,

1. if s1 damages◦ s′
1 then there is s′

2 ∈ S such that
s2 damages◦ s′

2
2. if s1 repairs◦ s′

1 then there is s′
2 ∈ S such that

s2 repairs◦ s′
2.

– For all S ⊆ S × S ,

O�(S) := {(s1, s2) ∈ S | s1 � s2 and s2 � s1}.

– ≈ := the greatest fixpoint of O�
= ⋃{ S | S ⊆ O�(S) },

by Knaster-Tarski (O� is monotonic).

The informal meaning of s1 ≈ s2 is that s1 and s2 are the
same as far as the underlying relations are concerned, and
so when it comes to model-checking, one can be substituted
by the (hopefully smaller) other. s1 ≡� s2, on the other
hand, says explicitly that s1 and s2 satisfy the same formu-
lae. Hence ≈ and ≡� are actually the same relation. Note that
any standard bisimilarity relation, such as ≈, when restricted
to a finite domain, such as the set of all actual (those that
exist now)—as opposed to potential—software systems, is
computable in polynomial time (cf. [25, p. 274] and [26]).

Definition 9 (Classifying software systems with
characteristic formulae) Let S ⊆ S , s ∈ S,

D(S, s) := {s′ ∈ S | s damages◦ s′ },
R(S, s) := {s′ ∈ S | s repairs◦ s′ },
and Ms ∈ M . Then, the characteristic formula χ(s, S) of
the software system s w.r.t. S is the solution of the equation
system

Ms
ν= ∀D(

∨

s′∈D(S,s) Ms′) ∧ ∀R(
∨

s′∈R(S,s) Ms′) ∧
[∧s′∈D(S,s) ∃D(Ms′)] ∧ [∧s′∈R(S,s) ∃R(Ms′)],

(where
∨ ∅ := ⊥ and

∧ ∅ := �) which can be obtained in a
standard way [19], by translating each equation Mi ν= ψ i (S)
into a formula νMi (ψ i (S)) and recursively substituting these
formulae for the corresponding free variables in the first for-
mula νMs(ψs(S)).

Fact 4 1. For all s ∈ S , χ(s,S) ∈ �.
(By Corollary 1.2, conjunction and disjunction in χ is
finite modulo ⇔.)

2. For all s ∈ S , s |� χ(s,S).
(By construction of χ .)

The characteristic formula of a system can be seen as the
way the system looks as viewed by the logic: it captures all
the logically expressible behaviour of the system, but con-
tains no other information. Characteristic formulae are useful
for classifying software systems including malware and its
derivatives into equivalence classes, as states the following
standard characterisation result leveraged from Fact 1.3.

Theorem 1 For all s, s′ ∈ S ,

s ≡� s′ iff s ≈ s′ iff s |� χ(s′,S).

That is, (1) equivalence w.r.t. the language (a set) � of
MalLog, (2) bisimilarity in MalLog, and (3) satisfaction of a
(single!) characteristic formula coincide.

Corollary 2 (Normal form) For all φ ∈ �,

φ ⇔
∨

s ∈ S and
s |� φ

χ(s,S).

Again by Corollary 1.2, disjunction is finite modulo ⇔.

3.3 Examples

We discuss a few examples of recent (in)famous pieces of
malware and their harmful effects on software systems and
their users, in order to illustrate the spirit of our approach.
Each discussion concludes with the derivation of a typical,
necessary condition for the correctness of the affected soft-
ware system. The condition represents a general lesson learnt
from the harmful attack. The conjunction of all necessary
conditions is an illustrative example of an approximative def-
inition of the predicate correct. Definite definitions of cor-
rect however are not our business. Given that harmful attacks
on software systems are falsifications of necessary conditions
for the correctness of those systems, correctness really is the
responsibility of the system designers. Finally, our discus-
sions do not mention malware code: in our approach, it is
possible to discuss malware abstractly, i.e., at the level of its
harmful effects and the lessons learnt. Hopefully, such les-
sons will eventually be expressed as correctness conditions,
as a matter of course.

Melissa The Melissa virus was detected in March 1999 [27,
Sect. 5.5]. It could cause heavy overload to email servers.
Concretely, Melissa infected Windows Word documents and
spread via Microsoft Outlook email attachments. The spread-
ing of the virus was triggered by opening an infected attach-
ment. On opening the attachment, the virus would write itself

123

112 S. Kramer, J. C. Bradfield

to the local hard disk, and, when Microsoft Outlook was pres-
ent in the infected computer, send messages with an infected
attachment to addresses in the user’s address book. A harmful
side-effect of the write operation was to violate the intended
typing of a Microsoft Word template file. Hence, a necessary
condition for the correctness of a file system is that always
all files be well-typed.

CodeRed The CodeRed worm was detected in July 2001
[3, Sect. 10.4.3]. It could cause Microsoft’s IIS web server
under Windows 2000 to become hijacked. Concretely, Co-
deRed usurped the exception handling of the web server by
injecting its own code into the stack and heap memory of
the affected computer. The code injection could take place
because the worm would make an invalid request to the
web server, which the server would handle nevertheless. The
request was invalid because it contained two pieces of invalid
data. The first piece was data whose encoding was invalid;
the second piece, actually the worm’s main code, was data
whose mere existence as a request body was invalid. The
server would misinterpret the invalid encoding by writing the
worm’s launch code beyond the limits of an exception frame
in the stack. Further, the server would write the worm’s main
code into the heap. The buffer-overflow in the stack would
trigger an exception that would interpret the worm’s launch
code in the stack by transferring control to the worm’s main
code in the heap—without return. Hence, a necessary con-
dition for the correctness of a web server is to accept only
valid incoming requests.

Slammer The Slammer worm was detected in January 2003
[3, Sect. 10.4.5]. It could cause large-scale denial of service in
the Internet. Concretely, Slammer affected Microsoft SQL by
creating a buffer overflow in the stack-based parameter pass-
ing mechanism of an SQL server function. The mechanism
failed to enforce that only strings of the specified maximal
length were effectively passed as parameters. As a result, the
worm would get passed through as a parameter and eventu-
ally get control of the computer. By definition, a necessary
and sufficient condition for the correctness of an implemen-
tation (the police so to say) is that it enforces its specification
(the law so to say)!

Opener The Opener virus was detected in October 2004
[27, Sect. 5.11]. It could cause a computer under Macintosh
OS X to become remote-controlled against the user’s will.
Concretely on an infected computer, Opener would turn the
local firewall off and the file sharing on, and install various
other pieces of malware that would try to steal confidential
information and violate the user’s privacy. Hence, a neces-
sary condition for the correctness of the operating system is
that the system preferences cannot be modified without the
user’s permission.

Conficker The Conficker worm was detected in November
2008, and has not been neutralised so far [28]. It can cause a
computer under the Windows operating system to become a
component of a remote-controlled botnet against the user’s
will. On an infected computer, Conficker causes a buffer
overflow in which harmful excess code is executed by the
operating system. The excess code downloads more code
that hijacks the server services of the operating system, in
order to update and spread the worm via the network. What
is more, variant code inhibits also the security services of
the operating system and connections to anti-malware web-
sites. Hence, a necessary condition for the correctness of
the operating system is to be always free of buffer-over-
flows.

4 Conclusion

4.1 Assessment

Particular (general) detection of computer viruses being
(un)decidable [16], the existence of computer viruses induces
an arms race between, on the one side, the malware com-
munity (the black-hat hackers) and, on the other side, the
anti-malware community (the white-hat hackers).

Our approach to the definition of malware confines this
arms race to software systems engineering. Therein, for-
mal specification and verification, as well as validation are
the weapons of the white-hat hackers, who must say more
and more what must and what must not be. We can assist
the white-hat hackers in this task with the following, itera-
tive methodology, which is in the spirit of counterexample-
guided abstraction refinement [29]:

1. define or refine the predicate correct for the chosen tar-
get domain of software systems (choose your favourite
school of expression19)

2. apply our framework to the domain (if correct is decid-
able then “apply” means “run”)

3. if, as a result, a system does not qualify formally as mal-
ware that intuitively should, go to 1.

Metaphorically speaking, the white-hat hackers act as the
white blood cells of the Internet’s digital immune system [3,
Sect. 15.6], and our methodology is intended to be a possible
support for deploying immune response.

We reduce malware detection to (dynamic) software ver-
ification and validation (the sandbox) based on modal logic

19 Except MalLog itself! Such a choice would confuse language and
meta-language, and cause the concept of malware to be non-well-
defined. An example is to stipulate that a necessary condition for
correctness be to be not malware.

123

A general definition of malware 113

for arbitrary software systems. Our approach evidences our
conviction that the technological security of software sys-
tems can be indirectly reduced to their correctness. Given
that harmful attacks on operating systems are falsifications
of necessary conditions for the correctness of the operat-
ing system, anti-malware production is the responsibility of
operating system producers. Other approaches in a similar
spirit are: [30] based on algebraic specification for assem-
bly software systems, [31] based on static program analysis
(control-flow graph extraction) for arbitrary software sys-
tems, and [32] based on abstract interpretation.

Three major advantages of our approach are: generality,
genericity, and safety—all thanks to abstractness. Our app-
roach is general and safe because it focuses on what
malware effects but abstracts from how malware actu-
ally and potentially does so. In particular, our approach
is hacker-safe in the sense that it does not enable hack-
ers to derive recipes for how to actually construct mal-
ware. Our approach is generic in the sense that different
generations of MalLog (and thus malware classifications)
can be obtained by redefinitions of damages◦ and repairs◦.
Finally, our approach also explicates the ultimate futility
of the arms race between the black-hat and the white-hat
hackers. Technology is not an end, worse, technology is a
means to the race: it is a means to a potentially infinite
ascending chain of mutual damage leading to nothing but
software systems of ever increasing (specification and thus
implementation) complexity, and hence decreasing usability
(cf. Fig. 1). Fortunately in practice, the existence of resource
bounds implies the existence of an equilibrium of mutual
damage.

4.2 Future work

The items on our agenda for future work are:

1. to quantify with measure the futility—and thus predict
the practical equilibrium—of the arms race between the
black-hat and the white-hat hackers

2. to reconsider the class of software systems S as the
class of software system (initial or present) states, and
to introduce temporal modality into MalLog in order to
study malware evolution and the co-evolution between
malware and its derivatives

3. to meet in the middle [21]’s bottom-up approach with
our top-down approach.

A possible simplification of MalLog suggested by
G. Bonfante is to define both damage and repair in terms of
a common relation (suggested by an anonymous reviewer),
say ensures. Assume that there is 1 ∈ S s.t. for all s ∈ S ,
1(s) = s. Then,

s ensures s′ :iff correct(s(s′))
s damages s′ :iff 1 ensures s′ and not s ensures s′

s repairs s′ :iff not 1 ensures s′ and s ensures s′.

Further, the following two variations of MalLog suggested
by S. Pradalier are conceivable:

1. the generalisation of damages◦ from chains to trees of
damage, which induces a notion of contribution to dam-
age with as tree root the damaged system and as tree leafs
the contributing systems

2. the addition of a ternary accessibility relation for formal
vaccination

s vaccinates s′ against s′′ :iff
s′′ damages s′and not s′′ damages s(s′)

with the corresponding binary modality for the defini-
tion of what could be called vacware (for vaccinating
software, or “vaccine” for affected software).

Finally, we could conceive a variant of MalLog in which
correctness is rendered as an atomic proposition correct so
that

�correct� := {s ∈ S | correct(s)},
and composability is rendered as modality:

‖∀C(φ)‖�·� := {s ∈ S | for all s′ ∈ S , s′(s) ∈ ‖φ‖�·�}
∃C(φ) := ¬∀C(¬φ)

‖∀C(φ)‖�·� := {s ∈ S | for all s′ ∈ S , s(s′) ∈ ‖φ‖�·�}
∃C(φ) := ¬∀C(¬φ).

One could then investigate the definability of damage and
repair as modality in terms of composability as modality in
the above or other (e.g., binary) forms, and fixpoint operators
in the form of Definition 3.

Acknowledgments The first author thanks Jean-Luc Beuchat,
Guillaume Bonfante, Johannes Borgström, Rajeev Goré, George
Davida, Olga Grinchtein, Ciro Larrazabal, Mircea Marin, Lawrence S.
Moss, Prakash Panangaden, Sylvain Pradalier, Daniel Reynaud-Plantey,
Vijay Varadharajan, and Matt Webster for delightful discussions.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Filiol, E., Helenius, M., Zanero, S.: Open problems in virology.
J. Comput. Virol. 1(3–4) (2006)

123

114 S. Kramer, J. C. Bradfield

2. Kramer, S., Bradfield, J.C.: A general definition of malware. pre-
sented at the Workshop on the Theory of Computer Viruses (2008)

3. Szor, P.: The Art and Craft of Computer Virus Research and
Defense. Addison-Wesley, Boston (2005)

4. Brunnstein, K.: From antivirus to antimalware software and
beyond: another approach to the protection of customers from dys-
functional system behaviour. In: Proceedings of the National Infor-
mation Systems Security Conference (1999)

5. Virus Encyclopedia. http://www.viruslist.com/
6. European Expert Group for IT-Security. http://www.eicar.org/
7. Information Warfare Monitor. http://www.infowar-monitor.net/
8. The Information Warfare Site. http://www.iwar.org.uk/
9. Clarke, E.M. Jr., Grumberg, O., Peled, D.A.: Model Checking. MIT

Press, Cambridge (1999)
10. Bergstra, J.A., Ponse, A., Smolka, S.A.: (eds.) Handbook of Pro-

cess Algebra. Elsevier, New York (2001)
11. Fitting, M.: First-Order Logic and Automated Theorem Prov-

ing. Springer, New York (1996)
12. Harrison, J.: Handbook of Practical Logic and Automated Reason-

ing. Cambridge University Press, Cambridge (2009)
13. Necula, G.: Proof-carrying code. In: Proceedings of the ACM Sym-

posium on Principles of Programming Languages (1997)
14. Filiol, E.: Les virus informatiques: théorie, pratique et applications,

2nd edn. Springer, France (2009)
15. Adleman, L.: An abstract theory of computer viruses. In: Proceed-

ings of CRYPTO, vol. 403 of LNCS (1988)
16. Cohen, F.: Computer viruses: Theory and experiments. J. Comput.

Secur. 6 (1987)
17. Dowling, W.F.: There are no safe virus tests. Am. Math. Mon. 96(9)

(1989)
18. Jacob, G., Debar, H., Filiol, E.: Behavioral detection of malware:

from a survey towards an established taxonomy. J. Comput. Virol.
4(3) (2008)

19. Bradfield, J., Stirling, C.: Handbook of Modal Logic, chapter
Modal Mu-Calculi. (2007)

20. Alberucci, L., Salipante, V.: On modal µ-calculus and non-well-
founded set theory. J. Philos. Log. 33(4) (2004)

21. Bonfante, G., Kaczmarek, M., Marion, J.-Y.: On abstract computer
virology from a recursion theoretic perspective. J. Comput. Virol.
1(3–4) (2006)

22. Fisher, J.A., Henzinger, T.A.: Executable cell biology. Nat. Bio-
technol. 25 (2007)

23. Webster, M., Malcolm, G.: Formal affordance-based models of
computer virus reproduction. J. Comput. Virol. 4(4) (2008)

24. Weaver, N., Paxson, V., Staniford, S., Cunningham, R.: A taxon-
omy of computer worms. In Proceedings of the ACM workshop on
Rapid malcode (2003)

25. Goranko, V., Otto, M.: Handbook of Modal Logic, chapter Model
Theory of Modal Logic. (2007)

26. Dovier, A., Piazza, C., Policriti, A.: An efficient algorithm for com-
puting bisimulation equivalence. Theor. Comput. Sci. 311(1–3)
(2004)

27. Salomon, D.: Foundations of Computer Security. Springer,
Berlin (2006)

28. Lawson, G.: On the trail of the Conficker worm. Computer (2009)
29. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexam-

ple-guided abstraction refinement for symbolic model checking.
J. ACM 50(5) (2003)

30. Webster, M., Malcolm, G.: Detection of metamorphic and virtu-
alization-based malware using algebraic specification. J. Comput.
Virol. 5(3) (2009)

31. Bonfante, G., Kaczmarek, M., Marion, J.-Y.: Architecture of a mor-
phological malware detector. J. Comput. Virol. 5(3) (2009)

32. Dalla Preda, M., Christodorescu, M., Jha, S.: A semantics-based
approach to malware detection. ACM Transactions on Program-
ming Languages and Systems 30(5) (2008)

33. Blackburn, P., van Benthem, J., Wolter, F.: (eds.) Handbook of
Modal Logic, Volume 3 of Studies in Logic and Practical Reason-
ing. Elsevier, Amsterdam (2007)

123

http://www.viruslist.com/
http://www.eicar.org/
http://www.infowar-monitor.net/
http://www.iwar.org.uk/

	A general definition of malware
	Abstract
	1 Introduction
	2 Malware and its derivatives
	2.1 Auxiliary definitions
	2.2 Main definitions

	3 Application
	3.1 Scope
	3.2 Tasks, tools, and techniques
	3.3 Examples

	4 Conclusion
	4.1 Assessment
	4.2 Future work

	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

