
Model-Checking Games for Fixpoint Logics
with Partial Order Models

Julian Gutierrez and Julian Bradfield

LFCS. School of Informatics. University of Edinburgh
Informatics Forum, 10 Crichton Street, Edinburgh, EH8 9AB, UK

Abstract. We introduce model-checking games that allow local second-
order power on sets of independent transitions in the underlying partial
order models where the games are played. Since the one-step interleav-
ing semantics of such models is not considered, some problems that may
arise when using interleaving semantics are avoided and new decidability
results for partial orders are achieved. The games are shown to be sound
and complete, and therefore determined. While in the interleaving case
they coincide with the local model-checking games for the µ-calculus,
Lµ, in a noninterleaving setting they verify properties of Separation Fix-
point Logic (SFL), a logic that can specify in partial orders properties
not expressible with Lµ. The games underpin a novel decision procedure
for model-checking all temporal properties of a class of infinite and reg-
ular event structures, thus improving previous results in the literature.

Keywords: Modal and temporal logics; Model-checking games; Hintikka
game semantics; Partial order models of concurrency; Process algebras.

1 Introduction

Model-checking games, also called Hintikka evaluation games, are played by two
players, a “Verifier” Eve (∃) and a “Falsifier” Adam (∀). These logic games are
played in a formula φ and a mathematical model M. In a game G(M, φ) the
goal of Eve is to show that M |= φ, while the goal of Adam is to refute such an
assertion. Solving these games amounts to answering the question of whether or
not Eve has a strategy to win all plays in the game G(M, φ). These logic games
have a long history in mathematical logic and in the last two decades have
become an active area of research in computer science, both from theoretical
and practical view points. Good introductions to the subject can be found in [2,
10].

In concurrency and program verification, most usually φ is a modal or a tem-
poral formula and M is a Kripke structure or a labelled transition system (LTS),
i.e., a graph structure, and the two players play the game G(M, φ) globally by
picking single elements of M, according to the game rules defined by φ. This
setting works well for concurrent systems with interleaving semantics since one
always has a notion of global state enforced by the (nondeterministic) sequential
computation of atomic actions, which in turn allows the players to choose only

single elements of the structure M. However, when considering concurrent sys-
tems with partial order models explicit notions of locality and concurrency have
to be taken into account. A possible solution to this problem – the traditional
approach – is to use the one-step interleaving semantics of such models in order
to recover the globality and sequentiality of the semantics of formulae.

This solution is, however, problematic for at least five reasons. Firstly, inter-
leaving models usually suffer from the state space explosion problem. Secondly,
interleaving interpretations cannot be used to give completely satisfactory game
semantics to logics with partial order models as all information on independence
in the models is lost in the interleaving simplification. Thirdly, although tempo-
ral properties can still be verified with the interleaving simplification, properties
involving concurrency, causality and conflict, natural to partial order models of
concurrency, can no longer be verified. From a more practical standpoint, par-
tial order reduction methods cannot be applied directly to interleaving models
in order to build less complex model checkers based on these techniques. Finally,
the usual techniques for verifying interleaving models cannot always be used to
verify partial order ones since such problems may become undecidable.

For these reasons, we believe that the study of verification techniques for
partial order models continues to deserve much attention since they can help
alleviate some of the limitations related with the use of interleaving models. We,
therefore, abandon the traditional approach to defining model-checking games
for logics with partial order models and introduce a new class of games called
‘trace local monadic second-order (LMSO) model-checking games’, where sets of
independent elements of the structure at hand can be locally recognised. These
games avoid the need of using the one-step interleaving semantics of partial
order models, and thus define a more natural framework for analysing fixpoint
modal logics with noninterleaving semantics. As a matter of fact, their use in the
temporal verification of a class of regular event structures [11] improves previous
results in the literature [5, 7]. We do so by allowing a free interplay of fixpoint
operators and local second-order power on conflict-free sets of transitions.

The logic we consider is Separation Fixpoint Logic (SFL) [3], a µ-calculus
(Lµ) extension that can express causal properties in partial order models (e.g.,
transition systems with independence, Petri nets or event structures), and al-
lows for doing dynamic local reasoning. The notion of locality in SFL, namely
separation or disjointness of independent sets of resources, was inspired by the
one defined statically for Separation Logic [8]. Since SFL is as expressive as Lµ
in an interleaving context, nothing is lost with respect to the main approaches to
logics for concurrency with interleaving semantics. Instead, logics and techniques
for interleaving concurrency are extended to a partial order setting with SFL.

Section 2 contains some background concepts and definitions. In Section 3,
trace LMSO model-checking games are defined, and in Section 4 their soundness
and completeness is proved. In Section 5, we show that they are decidable and
their coincidence with the local model-checking games for Lµ in the interleaving
case. In Section 6 the game is used to effectively model-check a class of regular
and infinite event structures. The paper concludes with Section 7.

2

2 Preliminaries

2.1 A Partial Order Model of Concurrency

A transition system with independence (TSI) [6] is an LTS where independent
transitions can be recognised. Formally, a TSI T is a structure (S, s0, T,Σ, I),
where S is a set of states with initial state s0, T ⊆ S × Σ × S is a transition
relation,Σ is a set of labels, and I ⊆ T×T is an irreflexive and symmetric relation
on independent transitions. The binary relation ≺ on transitions defined by

(s, a, s1) ≺ (s2, a, q) ⇔
∃b.(s, a, s1)I(s, b, s2) ∧ (s, a, s1)I(s1, b, q) ∧ (s, b, s2)I(s2, a, q)

expresses that two transitions are instances of the same action, but in two differ-
ent interleavings. We let ∼ be the least equivalence relation that includes ≺, i.e.,
the reflexive, symmetric and transitive closure of ≺. The equivalence relation ∼
is used to group all transitions that are instances of the same action in all its
possible interleavings. Additionally, I is subject to the following axioms:

– A1. (s, a, s1) ∼ (s, a, s2) ⇒ s1 = s2
– A2. (s, a, s1)I(s, b, s2) ⇒ ∃q.(s, a, s1)I(s1, b, q) ∧ (s, b, s2)I(s2, a, q)
– A3. (s, a, s1)I(s1, b, q) ⇒ ∃s2.(s, a, s1)I(s, b, s2) ∧ (s, b, s2)I(s2, a, q)
– A4. (s, a, s1) ≺ ∪ � (s2, a, q)I(w, b, w′) ⇒ (s, a, s1)I(w, b, w′)

Axiom A1 states that from any state, the execution of an action leads always
to a unique state. This is a determinacy condition. Axioms A2 and A3 ensure
that independent transitions can be executed in either order. Finally, A4 ensures
that the relation I is well defined. More precisely, A4 says that if two transitions
t and t′ are independent, then all other transitions in the equivalence class [t]∼
(i.e., all other transitions that are instances of the same action but in different
interleavings) are independent of t′ as well, and vice versa.

Local Dualities. Based on the previous axiomatization one can define two ways
of observing concurrency such that in each case they are dual to causality and
conflict, respectively [3]. The semantics of SFL is based on these dualities. Given
a state s and a transition t = (s, a, s′), s is called the source node, src(t) = s, and
s′ the target node, trg(t) = s′. Thus, define the following relations on transitions:

⊗ def= {(t1, t2) ∈ T × T | src(t1) = src(t2) ∧ t1 I t2}
def= {(t1, t2) ∈ T × T | src(t1) = src(t2) ∧ ¬(t1 I t2)}
	 def= {(t1, t2) ∈ T × T | trg(t1) = src(t2) ∧ t1 I t2}
≤ def= {(t1, t2) ∈ T × T | trg(t1) = src(t2) ∧ ¬(t1 I t2)}

2.2 Sets in a Local Context

The relation ⊗ defined on pairs of transitions, can be used to recognize sets
where every transition is independent of each other and hence can all be executed
concurrently. Such sets are said to be conflict-free and belong to the same trace.

3

Definition 1 A conflict-free set of transitions P is a set of transitions with the
same source node, where t⊗ t′ for each two elements t and t′ in P .

Given a TSI T = (S, s0, T,Σ, I), all conflict-free sets of transitions at a state
s ∈ S can be defined locally from the maximal set of transitions Rmax(s), where
Rmax(s) is the set of all transitions t ∈ T such that src(t) = s. Hence all maximal
sets and conflict-free sets of transitions are fixed given a particular TSI. Now we
define the notion of locality used to give the semantics of SFL.

Definition 2 Given a TSI T, a support set R in T is either a maximal set of
transitions in T or a non-empty conflict-free set of transitions in T.

Given a TSI, the set of all its support sets is denoted by P. The next definition
is useful when defining the semantics of SFL: R1]R2 v R

def= R1 ∪ R2 ⊆ R,
and R1 and R2 are two disjoint non-empty conflict-free support sets, and ¬∃t ∈
R \ (R1 ∪R2). ∀t′ ∈ R1 ∪R2. t⊗ t′.

Notice that the last definition characterizes support sets R1 and R2 that
contain only concurrent transitions and cannot be made any bigger with respect
to the support set R. Therefore, the sets R1]R2 with the properties above are
the biggest traces that can be recognized from a support set R.

2.3 Separation Fixpoint Logic

Definition 3 Separation Fixpoint Logic (SFL) [3] has formulae φ built from a
set Var of variables Y, Z, ... and a set L of labels a, b, ... by the following grammar:

φ ::= Z | ¬φ1 | φ1 ∧ φ2 | 〈K〉cφ1 | 〈K〉ncφ1 | φ1 ∗ φ2 | µZ.φ1

where Z ∈ Var, K ⊆ L, and µZ.φ1 has the restriction that any free occurrence of
Z in φ1 must be within the scope of an even number of negations. Dual operators
are defined as expected: φ1 ∨ φ2

def= ¬(¬φ1 ∧ ¬φ2), φ1 1 φ2
def= ¬(¬φ1 ∗ ¬φ2),

[K]c φ1
def= ¬〈K〉c¬φ1, [K]nc φ1

def= ¬〈K〉nc¬φ1, νZ.φ1
def= ¬µZ.¬φ1 [¬Z/Z].

Definition 4 A TSI-based SFL model M is a TSI T = (S, s0, T,Σ, I) together
with a valuation V : Var → 2S, where S = S×P×A is the set of tuples (s,R, t)
of states s ∈ S, support sets R ∈ P in the TSI T, and transitions t ∈ A = T∪{tε}.
The denotation ‖φ‖T

V of an SFL formula φ in the model M = (T,V) is a subset
of S, given by the following rules (omitting the superscript T):

‖Z‖V = V(Z)
‖¬φ‖V = S− ‖φ‖V
‖φ1 ∧ φ2‖V = ‖φ1‖V ∩ ‖φ2‖V
‖〈K〉cφ‖V = {(s, R, t) | ∃b ∈ K. ∃s′ ∈ S.

t ≤ (t′ = s
b−→ s′) ∧ t′ ∈ R ∧ (s′, R′

max(s
′), t′) ∈ ‖φ‖V}

‖〈K〉ncφ‖V = {(s, R, t) | ∃b ∈ K. ∃s′ ∈ S.

t	 (t′ = s
b−→ s′) ∧ t′ ∈ R ∧ (s′, R′

max(s
′), t′) ∈ ‖φ‖V}

‖φ1 ∗ φ2‖V = {(s, R, t) | ∃R1, R2.
R1]R2 v R ∧ (s, R1, t) ∈ ‖φ1‖V ∧ (s, R2, t) ∈ ‖φ2‖V}

‖µZ.φ(Z)‖V =
T
{Q ⊆ S | ‖φ‖V[Z:=Q] ⊆ Q}

4

where V [Z := Q] is the valuation V ′ which agrees with V save that V ′(Z) = Q.
A tuple (s,R, t) of a model M is called a process. The initial process is the tuple
(s0, Rmax(s0), tε), where s0 is the initial state of T and tε is the empty transition,
such that for all t ∈ T if s0 = src(t), then tε ≤ t.

Remark 1 The models we consider here are infinite state systems of finite
branching, i.e., image-finite. Also, henceforth, w.l.o.g., we consider only formu-
lae in positive normal form for the definition of the games in the next section.

3 Trace LMSO Model-Checking Games

Trace LMSO model-checking games G(M, φ) are played on a model M = (T,V),
where T = (S, s0, T,Σ, I) is a TSI, and on an SFL formula φ. The game can also
be presented as GM(H0, φ), or even as GM(s0, φ), where H0 = (s0, Rmax(s0), tε)
is the initial process of S. The board in which the game is played has the form
B = S × Sub(φ), for a process space S = S × P × A of states in S, support
sets in P and transitions in A in the TSI T. The subformula set Sub(φ) of an
SFL formula φ is defined by the Fischer–Ladner closure of SFL formulae in the
standard way.

A play is a possibly infinite sequence of configurations C0, C1, ..., written as
(s,R, t) ` φ or H ` φ whenever possible; each Ci is an element of the board B.
Every play starts in the configuration C0 = H0 ` φ, and proceeds according to
the rules of the game given in Fig. 1. As usual for model-checking games, player
∃ tries to prove that H0 |= φ whereas player ∀ tries to show that H0 6|= φ.

The rules (FP) and (VAR) control the unfolding of fixpoint operators. Their
correctness is based on the fact that σZ.φ ≡ φ [σZ.φ/Z] according to the seman-
tics of the logic. Rules (∨) and (∧) have the same meaning as the disjunction and
conjunction rules, respectively, in a Hintikka game for propositional logic. Rules
(〈 〉c), (〈 〉nc), ([]c) and ([]nc) are like the rules for quantifiers in a standard
Hintikka game semantics for first-order (FO) logic, provided that the box and
diamond operators behave, respectively, as restricted universal and existential
quantifiers sensitive to the causal information in the partial order model.

Finally, the most interesting rules are (∗) and (1). Local monadic second-
order moves are used to recognize conflict-free sets of transitions in M, i.e., those
in the same trace. Such moves, which restrict the second-order power (locally) to
traces, give the name to this game. The use of (∗) and (1) requires both players
to make a choice, but at different levels and with different amount of knowledge.
The first player must look for two non-empty conflict-free set of transitions, with
no information on which formula φi the other player will choose afterwards.

Guided by the semantics of ∗ (resp. 1), it is defined that player ∃ (resp. ∀)
must look for a pair of non-empty conflict-free sets of transitions R0 and R1 to be
assigned to each formula φi as their support sets. This situation is equivalent to
playing a trace for each subformula in the configuration. Then player ∀ (resp. ∃)
must choose one of the two subformulae, with full knowledge of the sets that have
been given by player ∃ (resp. ∀). It is easy to see that ∗ should be regarded as

5

(FP)
H ` σZ.φ

H ` Z
σ ∈ {µ, ν} (VAR)

H ` Z

H ` φ
fp(Z) = σZ.φ

(∨)
H ` φ0 ∨ φ1

H ` φi
[∃] i : i ∈ {0, 1} (∧)

H ` φ0 ∧ φ1

H ` φi
[∀] i : i ∈ {0, 1}

(〈 〉c)
(s, R, t) ` 〈K〉cφ

(s′, R′
max(s

′), t′) ` φ
[∃] b : b ∈ K, s

b−→ s′ = t′ ∈ R, t ≤ t′

(〈 〉nc)
(s, R, t) ` 〈K〉ncφ

(s′, R′
max(s

′), t′) ` φ
[∃] b : b ∈ K, s

b−→ s′ = t′ ∈ R, t	 t′

([]c)
(s, R, t) ` [K]c φ

(s′, R′
max(s

′), t′) ` φ
[∀] b : b ∈ K, s

b−→ s′ = t′ ∈ R, t ≤ t′

([]nc)
(s, R, t) ` [K]nc φ

(s′, R′
max(s

′), t′) ` φ
[∀] b : b ∈ K, s

b−→ s′ = t′ ∈ R, t	 t′

(∗) (s, R, t) ` φ0 ∗ φ1

(s, Ri, t) ` φi
[∃] R0, R1; [∀] i : R0]R1 v R, i ∈ {0, 1}

(1)
(s, R, t) ` φ0 1 φ1

(s, Ri, t) ` φi
[∀] R0, R1; [∃] i : R0]R1 v R, i ∈ {0, 1}

Fig. 1. Trace LMSO Model-Checking Game Rules of SFL. The notation [∀] denotes a
choice made by Player ∀, the notation [∃] denotes a choice by Player ∃.

a special kind of conjunction and 1 of disjunction. Indeed, they are a structural
conjunction and disjunction, respectively.

Definition 5 The following rules are the winning conditions that determine a
unique winner for every finite or infinite play C0, C1, ... in a game GM(H0, φ).

Player ∀ wins a finite play C0, C1, ..., Cn or an infinite play C0, C1, ... iff:

1. Cn = H ` Z and H 6∈ V(Z).
2. Cn = (s,R, t) ` 〈K〉cψ and {(s′, R′, t′) : b ∈ K ∧ t ≤ t′ = s

b−→ s′ ∈ R} = ∅.
3. Cn = (s,R, t) ` 〈K〉ncψ and {(s′, R′, t) : b ∈ K ∧ t	 t′ = s

b−→ s′ ∈ R} = ∅.
4. Cn = (s,R, t) ` φ0 ∗ φ1 and {R0 ∪R1 : R0]R1 v R} = ∅.
5. The play is infinite and there are infinitely many configurations where Z ap-

pears, such that fp(Z) = µZ.ψ for some formula ψ and Z is the syntactically
outermost variable in φ that occurs infinitely often.

Player ∃ wins a finite play C0, C1, ..., Cn or an infinite play C0, C1, ... iff:

1. Cn = H ` Z and H ∈ V(Z).
2. Cn = (s,R, t) ` [K]c ψ and {(s′, R′, t′) : b ∈ K ∧ t ≤ t′ = s

b−→ s′ ∈ R} = ∅.
3. Cn = (s,R, t) ` [K]nc ψ and {(s′, R′, t) : b ∈ K ∧ t	 t′ = s

b−→ s′ ∈ R} = ∅.
4. Cn = (s,R, t) ` φ0 1 φ1 and {R0 ∪R1 : R0]R1 v R} = ∅.
5. The play is infinite and there are infinitely many configurations where Z ap-

pears, such that fp(Z) = νZ.ψ for some formula ψ and Z is the syntactically
outermost variable in φ that occurs infinitely often.

6

4 Soundness and Completeness.

Let us first give some intermediate results. Due to lack of space some proofs are
omitted or sketched. Let T be a TSI and C = (s,R, t) ` ψ a configuration in the
game GM(H0, φ), as defined before. As usual, the denotation ‖φ‖T

V of an SFL
formula φ in the model M = (T,V) is a subset of S. We say that a configuration
C of GM(H0, φ) is true iff (s,R, t) ∈ ‖ψ‖T

V and false otherwise.

Fact 1 SFL is closed under negation.

Lemma 1 A game GM(H0, φ), where player ∃ has a winning strategy, has a
dual game GM(H0,¬φ) where player ∀ has a winning strategy, and conversely.

Proof. We use Fact 1 and duality and completeness of winning conditions. ut

Lemma 2 Player ∃ preserves falsity and can preserve truth with her choices.
Player ∀ preserves truth and can preserve falsity with his choices.

Proof. The cases for the rules (∧) and (∨) are just as for the Hintikka evaluation
games for FO logic. Thus, let us go on to check the rules for the other operators.
Firstly, consider the rule (〈 〉c) and a configuration C = (s,R, t) ` 〈K〉cψ, and
suppose that C is false. In this case there is no b ∈ K such that t ≤ t′ = s

b−→ s′ ∈
R and (s′, R′max(s

′), t′) ∈ ‖ψ‖T
V . Hence, the following configurations will be false

as well. Contrarily, if C is true, then player ∃ can make the next configuration
(s′, R′max(s

′), t′) ` ψ true by choosing a transition t′ = s
b−→ s′ ∈ R such that

t ≤ t′. The case for (〈 〉nc) is similar (simply change ≤ for), and the cases
for ([]c) and ([]nc) are dual. Now, consider the rule (∗) and a configuration
C = (s,R, t) ` ψ0 ∗ ψ1, and suppose that C is false. In this case there is no
pair of sets R0 and R1 such that R0] R1 v R and both (s,R0, t) ∈ ‖ψ0‖T

V and
(s,R1, t) ∈ ‖ψ1‖T

V to be chosen by player ∃. Hence, player ∀ can preserve falsity
by choosing the i ∈ {0, 1} where (s,Ri, t) 6∈ ‖ψi‖T

V , and the next configuration
(s,Ri, t) ` ψi will be false as well. On the other hand, suppose that C is true.
In this case, regardless of which i player ∀ chooses, player ∃ has previously fixed
two support sets R0 and R1 such that for every i ∈ {0, 1}, (s,Ri, t) ∈ ‖ψi‖T

V .
Therefore, the next configuration (s,Ri, t) ` ψi will be true as well. Finally, the
deterministic rules (FP) and (VAR) preserve both truth and falsity because of
the semantics of fixpoint operators. Recall that for any process H, if H ∈ ‖σZ.ψ‖
then H ∈ ‖ψ‖Z:=‖σZ.ψ‖ for all free variables Z in ψ. ut

Lemma 3 In any infinite play of a game GM(H0, φ) there is a unique syntacti-
cally outermost variable that occurs infinitely often.

Proof. By a contradiction argument and following an analysis of the structure
of those formulae that appear in the configurations of infinite plays. ut

Fact 2 Only rule (VAR) can increase the size of a formula in a configuration.
All other rules decrease the size of formulae in configurations.

7

Lemma 4 Every play of a game GM(H0, φ) has a uniquely determined winner.

Proof. For finite plays follows from winning conditions one to four (Definition 5).
For plays of infinite length, by analysing the unfolding of fixpoints and winning
conditions five of both players. We use Fact 2 and Lemma 3 in this case. ut

Definition 6 (Approximants) Let fp(Z) = µZ.φ for some formula φ and let
α, λ ∈ Ord be two ordinals, where λ is a limit ordinal. Then:

Z0 := ff, Zα+1 = φ [Zα/Z], Zλ =
∨
α<λ Z

α

For greatest fixpoints the approximants are defined dually. We can now show
that the analysis for fixpoint modal logics [1] can be extended to this scenario.

Theorem 1 (Soundness) Let T be the TSI in the model M = (T,V) of a
formula φ in the game GM(H0, φ). If H0 6∈ ‖φ‖T

V then player ∀ wins H0 ` φ.

Proof. Suppose H0 6∈ ‖φ‖T
V . We construct a possibly infinite game tree that

starts in H0 ` φ, for player ∀. We do so by preserving falsity according to
Lemma 2, i.e., whenever a rule requires player ∀ to make a choice then the tree
will contain the successor configuration that preserves falsity. All other choices
that are available for player ∃ are included in the game tree.

First, consider only finite plays. Since player ∃ only wins finite plays that end
in true configurations, then she cannot win any finite play by using her winning
conditions one to four. Hence, player ∀ wins each finite play in this game tree.

Now, consider infinite plays. The only chance for player ∃ to win is to use her
winning condition five. So, let the configuration H ` νZ.φ be reached such that
Z is the syntactically outermost variable that appears infinitely often in the play
according to Lemma 3. In the next configurationH ` Z, variable Z is interpreted
as the least approximant Zα such that H 6∈ ‖Zα‖T

V and H ∈ ‖Zα−1‖T
V , by the

principle of fixpoint induction. As a matter of fact, by monotonicity and due to
the definition of fixpoint approximants it must also be true that H ∈ ‖Zβ‖T

V
for all ordinals β such that β < α. Note that, also due to the definition of
fixpoint approximants, α cannot be a limit ordinal λ because this would mean
that H 6∈ ‖Zλ =

∧
β<λ Z

β‖T
V and H ∈ ‖Zβ‖T

V for all β < λ, which is impossible.
Since Z is the outermost variable that occurs infinitely often and the game

rules follow the syntactic structure of formulae, the next time that a configuration
C ′ = H ′ ` Z is reached, Z can be interpreted as Zα−1 in order to make C ′ false
as well. And again, if α− 1 is a limit ordinal λ, there must be a γ < λ such that
H ′ 6∈ ‖Zγ‖T

V and H ′ ∈ ‖Zγ−1‖T
V . One can repeat this process even until λ = ω.

But, since ordinals are well-founded the play must eventually reach a false
configuration C ′′ = H ′′ ` Z where Z is interpreted as Z0. And, according to
Definition 6, Z0 := tt, which leads to a contradiction since the configuration
C ′′ = H ′′ ` tt should be false, i.e., H ′′ ∈ ‖tt‖T

V should be false, which is impos-
sible. In other words, if H had failed a maximal fixpoint, then there must have
been a descending chain of failures, but, as can be seen, there is not.

As a consequence, there is no such least α that makes the configuration
H ` Zα false, and hence, the configuration H ` νZ.φ could not have been

8

false either. Therefore, player ∃ cannot win any infinite play with her winning
condition 5 either. Since player ∃ can win neither finite plays nor infinite ones
whenever H0 6∈ ‖φ‖T

V , then player ∀ must win all plays of GM(H0, φ). ut

Remark 2 If only finite state systems are considered Ord, the set of ordinals,
can be replaced by N, the set of natural numbers.

Theorem 2 (Completeness) Let T be the TSI in the model M = (T,V) of a
formula φ in the game GM(H0, φ) . If H0 ∈ ‖φ‖T

V then player ∃ wins H0 ` φ.

Proof. Suppose that H0 ∈ ‖φ‖T
V . Due to Fact 1 it is also true that H0 6∈ ‖¬φ‖T

V .
According to Theorem 1, player ∀ wins H0 ` ¬φ, i.e., has a winning strategy in
the game GM(H0,¬φ). And, due to Lemma 1, player ∃ has a winning strategy
in the dual game GM(H0, φ). Therefore, player ∃ wins H0 ` φ if H0 ∈ ‖φ‖T

V . ut

Theorems 1 and 2 imply that the game is determined. Determinacy and per-
fect information make this Hintikka game coincide with its Tarskian counterpart,
a feature difficult to get when considering logics with partial order models.

Corollary 1 (Determinacy) Player ∀ wins the game GM(H0, φ) iff player ∃
does not win the game GM(H0, φ).

5 Local Properties and Decidability

We have shown that trace LMSO model-checking games are still sound and
complete even when players are allowed to manipulate sets of independent tran-
sitions. Importantly, the power of these games, and also of SFL, is that such
a second-order quantification is kept both local and restricted to transitions in
the same trace. We now show that trace LMSO model-checking games enjoy
several local properties that in turn make them decidable in the finite case. Such
a decidable result is used in the forthcoming sections to extend the decidability
border of model checking a category of partial order models of concurrency.

Proposition 1 (Winning strategies) The winning strategies for the trace
LMSO model-checking games of Separation Fixpoint Logic are history-free.

Proof. Consider a winning strategy π for player ∃. According to Lemma 2 and
Theorem 2 such a strategy consists of preserving truth with her choices and
annotating variables with their approximant indices. But neither of these two
tasks depends on the history of a play. Instead they only depend on the current
configuration of the game. In particular notice that, of course, this is also the
case for the structural operators since the second-order quantification has only a
local scope. Similar arguments apply for the winning strategies of player ∀. ut

This result is key to achieve decidability of these games in the presence of
the local second-order quantification on the traces of the partial order models
we consider. Also, from a more practical standpoint, memoryless strategies are
desirable as they are easier to synthesize. However, synthesis is not studied here.

9

Theorem 3 The model-checking game for finite Transition systems with inde-
pendence against Separation Fixpoint Logic specifications is decidable.

Proof. Since the game is determined, finite plays are decided by winning con-
ditions one to four of either player. Now consider the case of plays of infinite
length; since the winning strategies of both players are history-free, we only need
to look at the set of different configurations in the game, which is finite even
for plays of infinite length. Now, in a finite system an infinite play can only be
possible if the model is cyclic. But, since the model has a finite number of states,
there is an upper bound on the number of fixpoint approximants that must be
calculated (as well as on the number of configurations of the game board that
must be checked) in order to ensure that either a greatest fixpoint is satisfied
or a least fixpoint has failed. As a consequence, all possible history-free winning
strategies for a play of infinite length can be computed, so that the game can be
decided using winning condition five of one of the players. ut

Remark 3 A naive local tableau algorithm is at least doubly exponential in the
system size, but applying global model-checking techniques, a formula of length
k and alternation depth d on a system of size n can be decided in time k.2O(nd).

The Interleaving Case. Local properties of trace LMSO model-checking games
can also be found in the interleaving case, namely, they coincide with the local
model-checking games for the modal µ-calculus as defined by Stirling [9]. As
shown in [3] interleaving systems can be cast using SFL by both syntactic and
semantic means. The importance of this feature of SFL is that even having con-
structs for independence and a partial order model, nothing is lost with respect
to the main approaches to interleaving concurrency. Recall that Lµ can be ob-
tained from SFL by considering the ∗-free language and using only the following
derived operators: 〈K〉φ = 〈K〉cφ ∨ 〈K〉ncφ and [K]φ = [K]c φ ∧ [K]nc φ.

Proposition 2 If either a model with an empty independence relation or the
syntactic Lµ fragment of SFL is considered, then the trace LMSO model-checking
games for SFL degenerate to the local model-checking games for the µ-calculus.

6 Model Checking Partial Order Models of Concurrency

In this section we use trace LMSO model-checking games to push forward the
decidability border of the model-checking problem of a particular class of par-
tial order models, namely, of a class of event structures [6]. More precisely, we
improve previous results [5, 7] in terms of logical expressive power.

6.1 SFL on Event Structures

Definition 7 A labelled event structure E is a tuple (E,4,], η,Σ), where E is
a set of events that are partially ordered by 4, the causal dependency relation on
events,] ⊆ E×E is an irreflexive and symmetric conflict relation, and η : E → Σ
is a labelling function such that the following holds:

10

If e1, e2, e3 ∈ E and e1]e2 4 e3, then e1]e3.
∀e ∈ E the set {e′ ∈ E | e′ 4 e} is finite.

The independence relation on events is defined with respect to the causal
and conflict relations. Two events e1 and e2 are concurrent, denoted by e1 co e2,
iff e1 64 e2 and e2 64 e1 and ¬(e1]e2). The notion of computation state for event
structures is that of a configuration. A configuration C is a conflict-free set of
events (i.e., if e1, e2 ∈ C, then ¬(e1]e2)) such that if e ∈ C and e′ 4 e, then
e′ ∈ C. The restriction to image-finite models implies that the partial order
4 of E is of finite branching, and hence for all C, the set of immediately next
configurations is bounded. If one further requires that for all e ∈ C, the set of
future non-isomorphic configurations rooted at e defines an equivalence relation
of finite index, then E is also regular [11].

An event structure E = (E,4,], η,Σ) determines a TSI T = (S, T,Σ, I) by
means of an inclusion functor from the category ES of event structures to the
category T SI of TSI. Here we give such a mapping in a set-theoretic way since
this presentation is more convenient for us. A categorical presentation can be
found in [4]. The construction λ : ES → T SI is as follows:

S = {C ⊆ E | ∀e1, e2 ∈ C. ¬(e1]e2), (e ∈ C ∧ e′ 4 e⇒ e′ ∈ C)} .
T = {(C, a,C ′) ∈ S ×Σ × S | ∃e ∈ E. η(e) = a, e 6∈ C,C ′ = C ∪ {e}}
I = {((C1, a, C

′
1), (C2, b, C

′
2)) ∈ T × T | ∃(e1, e2) ∈ co.

η(e1) = a, η(e2) = b, C ′
1 = C1 ∪ {e1}, C ′

2 = C2 ∪ {e2}}

where the set of states S of the TSI T is isomorphic to the set Conf of config-
urations C ⊆ E of the event structure E, and the set of labels Σ remains the
same. Since the semantics of SFL is given only by defining the relations ≤, 	,
and ⊗ on pairs of transitions at every state, i.e., on pairs of events at every
configuration, such a semantics can also be given directly from the elements of
an event structure using the construction above. Moreover, support sets and all
elements needed to build a lattice S and hence a model for SFL in the category
of event structures are defined using the same definitions as for the TSI case.

6.2 A Computable Folding Functor from Event Structures to TSI

Although we have defined satisfiability of SFL formulae in event structure mod-
els, model-checking these structures is rather difficult since very simple concur-
rent systems can have infinite event structures as models, in particular, all those
with recursive behaviour. In order to overcome this problem we define a mor-
phism (a functor) that folds a possibly infinite event structures into a TSI. Such
a morphism and the procedure to effectively compute it is described below.

The Quotient Set Method. Let Q = (Conf / ∼) be the quotient set repre-
sentation of Conf by ∼ in a finite or infinite event structure E, where Conf
is the set of configurations in E and ∼ is an equivalence relation on such con-
figurations. The equivalence class [X]∼ of a configuration X ∈ Conf is the set

11

{C ∈ Conf | C ∼ X}. A quotient set Q where ∼ is decidable is said to have a
decidable characteristic function, and will be called a computable quotient set.

Definition 8 A regular quotient set (Conf / ∼) of an event structure E = (E,4
,], η,Σ) is a computable quotient set representation of E with a finite number
of equivalence classes.

Having defined a regular quotient set representation of E, the morphism
λ : ES → T SI above can be modified to defined a new map λf : ES → T SI
which folds a (possibly infinite) event structure into a TSI:

S = {[C]∼ ⊆ Conf | ∃[X]∼ ∈ Q = (Conf / ∼). C ∼ X}
T = {([C]∼, a, [C ′]∼) ∈ S ×Σ × S | ∃e ∈ E. η(e) = a, e 6∈ C,C ′ = C ∪ {e}}
I = {(([C1]∼, a, [C ′

1]∼), ([C2]∼, b, [C ′
2]∼)) ∈ T × T | ∃(e1, e2) ∈ co.

η(e1) = a, η(e2) = b, C ′
1 = C1 ∪ {e1}, C ′

2 = C2 ∪ {e2}}

Lemma 5 Let T be a TSI and E an event structure. If T = λf (E), then the
models (T,V) and (E,V) satisfy the same set of SFL formulae.

Proof. The morphism λf : ES → T SI from the category of event structures to
the category of TSI has a unique right adjoint ε : T SI → ES, the unfolding
functor that preserves labelling and the independence relation between events,
such that for any E we have that E′ = (ε ◦ λf) (E), where E′ is isomorphic to E.
But SFL formulae do not distinguish between models and their unfoldings, and
hence cannot distinguish between (T,V) and (E′,V). Moreover, SFL formulae
do not distinguish between isomorphic models equally labelled, and therefore
cannot distinguish between (E′,V) and (E,V) either. ut

Having defined a morphism λf that preserves SFL properties, one can now
define a procedure that constructs a TSI model from a given event structure.

Definition 9 Let E = (E,4,], η,Σ) be an event structure and (Conf / ∼) a
regular quotient set representation of E. A representative set Er of E is a subset
of E such that ∀C ∈ Conf . ∃X ∈ Er. C ∼ X.

Lemma 6 Let E be an event structure. If E is represented as a regular quotient
set (Conf / ∼), then a finite representative set Er of E is effectively computable.

Proof. Construct a finite representative set Er as follows. Start with Er = ∅
and Cj = C0 = ∅, the initial configuration or root of the event structure. Check
Cj ∼ Xi for every equivalence class [Xi]∼ in Q and whenever Cj ∼ Xi holds
define both a new quotient set Q′ = Q \ [Xi]∼ and a new Er = Er ∪ Cj . This
subprocedure terminates because there are only finitely many equivalence classes
to check and the characteristic function of the quotient set is decidable. Now, do
this recursively in a breadth-first search fashion in the partial order defined on E
by 4, and stop when the quotient set is empty. Since 4 is of finite branching and
all equivalence classes must have finite configurations, the procedure is bounded
both in depth and breath and the quotient set will always eventually get smaller.
Hence, such a procedure always terminates. It is easy to see that this procedure
only terminates when Er is a representative set of E. ut

12

A finite representative set Er is big enough to define all states in the TSI
representation of E when using λf . However, such a set may not be enough to
recognize all transitions in the TSI. In particular, cycles cannot be recognized
using Er. Therefore, it is necessary to compute a set Ef where cycles in the TSI
can be recognized. We call Ef a complete representative set of E. The procedure
to construct Ef is similar to the previous one.

Lemma 7 Let E = (E,4,], η,Σ) be an event structure and Er a finite repre-
sentative set of E. If E is represented as a regular quotient set (Conf / ∼), then
a finite complete representative set Ef of E is effectively computable.

Proof. Start with Ef = Er, and set C = Conf (Er), the set of configurations
generated by Er. For each Cj in Er check in 4 the set Next(Cj) of next con-
figurations to Cj , i.e., those configurations C ′

j such that C ′
j = Cj ∪ {e} for some

event e in E \Cj . Having computed Next(Cj), set Ef = Ef ∪ (
⋃
Next(Cj)) and

C = C \ {Cj}, and stop when C is empty. This procedure behaves as the one
described previously. Notice that at the end of this procedure Ef is complete
since it contains the next configurations of all elements in Er. ut

Proposition 3 The TSI T generated from an event structure E using λf and a
finite complete representative Ef of E is the smallest TSI that represents E.

Proof. From Lemmas 6 and 7. There is only one state in T for each equivalence
class in the quotient set representation of E. Similarly there can be only one
transition in T for each relation on the equivalence classes of configurations in E
since, due to A1 of TSI (determinacy), λf forgets repeated transitions in T . ut

6.3 Temporal Verification of Regular Infinite Event Structures

Based on Lemmas 5 and 7 and on Theorem 3, we can give a decidability result
for the class of event structures studied in [5, 11] against SFL specifications. Such
a result, which is obtained by representing a regular event structure as a regular
quotient set, is a corollary of the following theorem:

Theorem 4 The model-checking problem for an event structure E represented
as a regular quotient set (Conf / ∼) against SFL specifications is decidable.

Regular Event Structures as Finite CCS Processes. A regular event
structure [5, 11] can be generated by a finite concurrent system represented by
a finite number of (possibly recursive) CCS processes [12]. Syntactic restric-
tions on CCS that generate only finite systems have been studied. Finiteness
of CCS processes and restriction to image-finite models give both requirements
for regularity on the event structures that are generated. Now, w.l.o.g., consider
only deterministic CCS processes without auto-concurrency. A CCS process is
deterministic if whenever a.M + b.N , then a 6= b, and similarly has no auto-
concurrency if whenever a.M ‖ b.N , then a 6= b. Notice that any CCS process P

13

that either is nondeterministic or has auto-concurrency can be converted into an
equivalent process Q which generates an event structure that is isomorphic, up
to relabelling of events, to the one generated by P . Eliminating nondeterminism
and auto-concurrency can be done by relabelling events in P(P), the powerset
of CCS processes of P , with an injective map θ : Σ → Σ∗ (where Σ∗ is a set of
labels and Σ ⊆ Σ∗), and by extending the Synchronization Algebra according to
the new labelling of events so as to preserve pairs of (labels of) events that can
synchronize. Also notice that the original labelling can always be recovered from
the new one, i.e., the one associated with the event structure generated by Q,
since θ is injective and hence has inverse θ−1 : Σ∗ → Σ. In [5, 11], deterministic
regular event structures are called trace event structures.

Finite CCS Processes as Regular Quotient Sets. Call ESProc(P) to the
set of configurations of the event structure generated by a CCS process P of the
kind described above. The set ESProc(P) together with an equivalence relation
between CCS processes ≡CCS given simply by syntactic equality between them
is a regular quotient set representation (ESProc(P) / ≡CCS) of the event struc-
ture generated by P . Notice that since there are finitely many CCS processes,
i.e., P(P) is finite, then the event structure generated by P is of finite-branching
and the number of equivalence classes is also bounded. Finally, ≡CCS is clearly
decidable because process P is always associated with configuration ∅ and any
other configuration in ESProc(P) can be associated with only one CCS process
in P(P) as they are deterministic and have no auto-concurrency after relabelling.

Corollary 2 Model-checking regular trace event structures against Separation
Fixpoint Logic specifications is decidable.

7 Concluding Remarks and Related Work

In this paper we introduced a new kind of model-checking games where both
players are allowed to choose sets of independent elements in the underlying
model. These games, which we call trace LMSO model-checking games, are
proved to be sound and complete, and therefore determined. They can be played
on partial order models of concurrency since the one-step interleaving semantics
of such models need not be considered. We showed that, similar to [3], by defining
infinite games where both players have a local second-order power on conflict-free
sets of transitions, i.e., those in the same trace, one can obtain new positive de-
cidability results on the study of partial order models of concurrency. Indeed, we
have pushed forward the borderline of the decidability of model-checking event
structures. To the best of our knowledge the technique we presented here is the
only game-based procedure defined so far that can be used to verify all usual
temporal properties of the kind of event structures we studied. We wonder how
much further one can go in terms of logical expressive power before reaching the
LMSO undecidability barrier when model-checking event structures.

14

Related Work. Model-checking games have been an active area of research in
the last decades (cf. [2, 10]). Most approaches based on games have considered
either only interleaving models or the one-step interleaving semantics of par-
tial order models. Our work differs from these approaches in that we deal with
games played on partial order models without considering interleaving simplifi-
cations. However, verification procedures in finite partial order models can be
undecidable. Nevertheless, the game presented here is decidable in the finite case.

Regarding the temporal verification of event structures, previous studies have
been done on restricted classes. Closer to our work is [5, 7]. Indeed, model-
checking regular event structures [11] has turned out to be rather difficult and
previous work has shown that verifying LMSO properties on these structures
is already undecidable. For this reason weaker logics have been studied. Unfor-
tunately, although very interesting results have been achieved, especially in [5]
where CTL? properties can be verified, previous approaches have not managed to
define decidable theories for a logic with enough power to express all usual tem-
poral properties as can be done with Lµ in the interleaving case, and hence with
SFL in a noninterleaving setting. The difference between [5] and the approach we
presented is that in [5] a global second-order quantification on conflict-free sets in
the partial order is permitted, whereas only a local second-order quantification
in the same kind of sets is defined here, but such a second-order power can be
embedded into fixpoint specifications, which in turn allows one to express more
temporal properties. Therefore, we have improved in terms of temporal expres-
sive power previous results on model-checking regular event structures against
a branching-time logic. Our work is the first (local) game approach in doing so.

References

1. J. Bradfield and C. Stirling. Modal mu-calculi. In Handbook of Modal Logic,
volume 3, pages 721–756. Elsevier, 2006.

2. E. Grädel. Model checking games. Electr. Notes Theor. Comput. Sci., 67, 2002.
3. J. Gutierrez. Logics and bisimulation games for concurrency, causality and conflict.

In L. de Alfaro, editor, FoSSaCS, LNCS 5504, pages 48–62. Springer, 2009.
4. A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from open maps. Inf. Comput.,

127(2):164–185, 1996.
5. P. Madhusudan. Model-checking trace event structures. In LICS, pages 371–380.

IEEE Computer Society, 2003.
6. M. Nielsen and G. Winskel. Models for concurrency. In Handbook of Logic in

Computer Science, volume 4, pages 1–148. Oxford University Press, 1995.
7. W. Penczek. Model-checking for a subclass of event structures. In E. Brinksma,

editor, TACAS, LNCS 1217, pages 145–164. Springer, 1997.
8. J. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS,

pages 55–74. IEEE Computer Society, 2002.
9. C. Stirling. Local model checking games. In I. Lee and S. A. Smolka, editors,

CONCUR, LNCS 962, pages 1–11. Springer, 1995.
10. C. Stirling. Modal and Temporal Properties of Processes. LNCS. Springer, 2001.
11. P. S. Thiagarajan. Regular trace event structures. Technical report, BRICS, 1996.
12. G. Winskel. Event structure semantics for ccs and related languages. In M. Nielsen

and E. Schmidt, editors, ICALP, LNCS 140, pages 561–576. Springer, 1982.

15

