
Stefan Bold, Benedikt Löwe,
Thoralf Räsch, Johan van Benthem (eds.)

Foundations of the Formal Sciences V

Infinite Games

The Complexity of

Independence-Friendly Fixpoint Logic

Julian Bradfield and Stephan Kreutzer

University of Edinburgh
Laboratory for Foundations of Computer Science
King’s Buildings
Mayfield Road
Edinburgh EH9 3JZ, United Kingdom

jcb@inf.ed.ac.uk

Oxford University
Computing Laboratory
Wolfson Building
Parks Road
Oxford OX1 3QD, United Kingdom

kreutzer@comlab.ox.ac.uk

abstract. We study the complexity of model-checking for the fix-
point extension of Hintikka and Sandu’s independence-friendly logic.
We show that this logic captures ExpTime; and by embedding PFP,
we show that its combined complexity is ExpSpace-hard, and more-
over the logic includes second order logic (on finite structures).

1 Introduction

In everyday life we often have to make choices in ignorance of the choices
made by others that might have affected our choice. With the popularity of
the agent paradigm, there is much theoretical and practical work on logics
of knowledge and belief in which such factors can be explicitly expressed in
designing multi-agent systems. However, ignorance is not the only reason for
making independent choices: in mathematical writing, it is not uncommon
to assert the existence of a value for some parameter uniformly in some
earlier mentioned parameter.

Hintikka and Sandu [HinSan196] introduced a logic, called Independence-
friendly (IF) logic, in which such independent choices can be formalized by

40 Julian Bradfield and Stephan Kreutzer

independent quantification. Some of the ideas go back some decades, for IF
logic can also be viewed as an alternative account of branching quantifiers
(Henkin quantifiers) in terms of games of imperfect information. Indepen-
dent quantification is a subtle concept, with many pitfalls for the unwary. It
is also quite powerful: it has long been known that it has existential second-
order power. In previous work [BraFrö02], the first author and Fröschle
applied the idea of independent quantification to modal logics, where it
has natural links with the theory of true concurrency; this prompted some
consideration of fixpoint versions of IF modal logics, since adding fixpoint
operators is the easiest way to get a powerful temporal logic from a simple
modal logic. This led the first author to an initial investigation [Bra03] of
the fixpoint extension of first-order IF logic, which we call IF-LFP . It turned
out that fixpoint IF logic is not trivial to define, and appears to be very
expressive, with the interaction between fixpoints and independent quan-
tification giving a dramatic increase in expressive power. In [Bra03], only
some fairly simple complexity results were obtained; in this paper, we obtain
much stronger results about the model-checking complexity of IF-LFP . For
the data complexity, we show that not only is IF-LFP ExpTime-complete,
but it captures ExpTime; and for the combined complexity, we obtain an
ExpSpace hardness result. This latter result is obtained by an embedding
of partial fixpoint logic into IF-LFP, which shows that on finite structures
IF-LFP even includes second-order logic, a much stronger result than the
first author previously conjectured.

2 IF-FOL and IF-LFP

2.1 Syntax

First of all, we state one important notational convention: to minimize
the number of parentheses, we take the scope of all quantifiers and fixpoint
operators to extend as far to the right as possible.

Now we define the syntax of first-order IF logic. Here we use the version
of Hodges [Hod097], and we confine the ‘independence-friendly’ operators
to the quantifiers; in the full logic, one can also specify conjunctions and
disjunctions that are independent, but these are not necessary for our pur-
poses — their addition changes none of our results.

Definition 1. As for FOL, IF-FOL has proposition (P,Q etc.), relation
(R,S etc.), function (f, g etc.) and constant (a, b etc.) symbols, with given
arities. It also has individual variables v, x etc. We write ~x,~v etc. for tuples
of variables, and similarly for tuples of other objects; we use concatenation
of symbols to denote concatenation of tuples with tuples or objects.

For formulae ϕ and terms t, the (meta-level) notations ϕ[~x] and t[~x] mean
that the free variables of ϕ or t are included in the variables ~x, without

The Complexity of Independence-Friendly Fixpoint Logic 41

repetition. The notions of ‘term’ and ‘free variable’ are as for FOL.
We assume equality = is in the language, and atomic formulae are defined

as usual by applying proposition or relation symbols to individual terms or
tuples of terms. The free variables of the formula R(~t) are then those of ~t.
The compound formulae are given as follows:

• Conjunction and disjunction. If ϕ[~x] and ψ[~y] are formulae, then
(ϕ ∨ ψ)[~z] and (ϕ ∧ ψ)[~z] are also formulae, where ~z is the union of ~x
and ~y.

• Quantifiers. If ϕ[~y, x] is a formula, x a variable, and W a finite set
of variables, then (∀x/W.ϕ)[~y] and (∃x/W.ϕ)[~y] are formulae. If W
is empty, we write just ∀x. ϕ and ∃x. ϕ.

• Game negation. If ϕ[~x] is a formula, so is (∼ϕ)[~x].

• Flattening. If ϕ[~x] is a formula, so is (↓ϕ)[~x].

• (Negation. ¬ϕ is an abbreviation for ∼↓ϕ.)

Definition 2. IF-FOL+ is the logic in which ∼, ↓ and ¬ are applied only
to atomic formulae.

2.2 Traditional semantics

In the independent quantifiers the intention is that W is the set of indepen-
dent variables, whose values the player is not allowed to know at this choice
point: thus the classical Henkin quantifier ∀x ∃y

∀u ∃v, where x and y are indepen-
dent of u and v, can be written as ∀x/∅.∃y/∅.∀u/{x, y}.∃v/{x, y}. This
notion of independence is the reason for saying that IF logic is natural in
mathematical English: statements such as “For every x, and for all ε > 0,
there exists δ, depending only on ε . . . ” can be transparently written as
∀x, ε > 0.∃δ/x. . . . in IF logic.

If one then plays the Hintikka evaluation game (otherwise known as the
model-checking game) with this additional condition, which can be formal-
ized by requiring strategies to be uniform in the ‘unknown’ variables, one
gets a game semantics of imperfect information, and defines a formula to
be true if and only if Eloise has a winning strategy.

These games are not determined, so it is not the case that Abelard has
a winning strategy iff the formula is not true. For example, ∀x

∃y
.x = y (or

∀x.∃y/{x}. x = y) is untrue in any structure with more than one element,
but Abelard has no winning strategy.

An alternative interpretation of the logic, dating from the early work on
branching quantifiers, and one that is easier to handle mathematically in
straightforward cases, is via Skolem functions with limited arguments. In

42 Julian Bradfield and Stephan Kreutzer

FOL, the first order sentence ∀x.∃y. x = y is converted via Skolemization
to the existential second-order sentence ∃f : N → N.∀x. x = f(x). In this
procedure, the Skolem function always takes as arguments all the universal
variables currently in scope. By allowing Skolem functions to take only
some of the arguments, we get a similar translation of IF-FOL: for example,
∀x.∃y/{x}. x = y becomes ∃f : 1 → N.∀x. x = f(). It can be shown that
these two semantics are equivalent, in that an IF-FOL sentence is true in
the game semantics if and only if its Skolemization is true.

It is also well known that IF-FOL+ is equivalent to existential second-
order logic (in the cases where this matters, ‘second-order’ here means func-
tion quantification rather than set quantification). This is because the
Skolemization process can be inverted: given an ESO sentence, it can be
turned into an IF-FOL sentence (or equivalently, a sentence with Henkin
quantifiers). We shall make use of this procedure later. Details can be
found in [Wal70, End70], but here let us illustrate it by a standard example
that demonstrates the power of IF logic. Consider the sentence ‘there is
an injective endofunction that is not surjective’. This is true only in infi-
nite domains, and therefore not first-order expressible. It can be expressed
directly in ESO as

∃f. (∀x1, x2. f(x1) = f(x2) ⇒ x1 = x2) ∧ (∃c.∀x. f(x) 6= c)

which for the sake of reducing complexity below we will simplify to

∃f.∃c.∀x1, x2. (f(x1) = f(x2) ⇒ x1 = x2) ∧ f(x1) 6= c.

The basic manoeuvre for talking about functions in IF-FOL is to replace
∃f.∀x by ∀x.∃y, so that y plays the rôle of f(x). In FOL, this works
only if there is just one application of f ; but in IF-FOL, we can do it for
two (or more) applications of f : we write ∀x1.∃y1, and then we write an
independent ∀x2/{x1, y1}.∃y2/{x1, y1}. Now in order to make sure that
these two (xi, yi) pairings represent the same f , the body of the translated
formula is given a clause (x1 = x2) ⇒ (y1 = y2). Applying this procedure
to the ESO sentence above and optimizing a bit, we get

∀x1, x2.∃y1/x2.∃y2/x1.∃c/{x1, x2}. (y1 = y2 ⇔ x1 = x2) ∧ y1 6= c.

The ‘game negation’ ∼ corresponds to swapping the roles of the two
players in the game. In ordinary logic, with perfect information, this cor-
responds exactly to classical negation; but in IF-FOL it does not. The
issue of negation is still controversial, particularly for open formulae; but
one approach, taken by [Hod097], is to define the ‘flattening’ operator ↓,
which smashes its argument down to a classical formula by removing all the
uniformity constraints imposed by imperfect information. Then classical
negation is defined to be game negation applied to a flattened formula.

The Complexity of Independence-Friendly Fixpoint Logic 43

2.3 Trump semantics

The game semantics is how Hintikka and Sandu originally interpreted IF
logic. Later on, the trump semantics of Hodges [Hod097], with variants
by others, gave a Tarski-style semantics, equivalent to the original. This
semantics is as follows:

Definition 3. Let a structure A be given, with constants, propositions
and relations interpreted in the usual way. A deal ~a for ϕ[~x] or ~t [~x] is an
assignment of an element of A to each variable in ~x. Given a deal ~a for
a tuple of terms ~t [~x], let ~t(~a) denote the tuple of elements obtained by
evaluating the terms under the deal ~a.

If ϕ[~x] is a formula and W is a subset of the variables in ~x, two deals ~a

and ~b for ϕ are ≃W -equivalent (~a ≃W
~b) if and only if they agree on the

variables not in W . A ≃W -set is a non-empty set of pairwise ≃W -equivalent
deals.

The denotation [[ϕ]] of a formula is a pair (T,C) where T is the set
of trumps, and C is the set of cotrumps. If ϕ has n free variables, then
T,C ⊆ ℘(℘(An)) – that is, a (co)trump is a set of deals.

• If (R(~t))[~x] is atomic, then a non-empty set D of deals is a trump if
and only if ~t(~a) ∈ R for every ~a ∈ D; D is a cotrump if and only if it
is non-empty and ~t(~a) /∈ R for every ~a ∈ D.

• D is a trump for (ϕ∧ψ)[~x] if and only if D is a trump for ϕ[~x] and D
is a trump for ψ[~x]; D is a cotrump if and only if there are cotrumps
E,F for ϕ,ψ such that every deal in D is an element of either E or
F .

• D is a trump for (ϕ∨ψ)[~x] if and only if it is non-empty and there are
trumps E of ϕ and F of ψ such that every deal in D belongs either to
E or F ; D is a cotrump if and only if it is a cotrump for both ϕ and
ψ.

• D is a trump for (∀y/W.ψ)[~x] if and only if the set {~ab | ~a ∈ D, b ∈ A }
is a trump for ψ[~x, y]. D is a cotrump if and only if it is non-empty
and there is a cotrump E for ψ[~x, y] such that for every ≃W -set F ⊆ D
there is a b such that {~ab | ~a ∈ F } ⊆ E.

• D is a trump for (∃y/W.ψ)[~x] if and only if there is a trump E for
ψ[~x, y] such that for every ≃W -set F ⊆ D there is a b such that {~ab |
~a ∈ F } ⊆ E; D is a cotrump if and only if the set {~ab | ~a ∈ D, b ∈ A }
is a cotrump for ψ[~x, y].

• D is a trump for ∼ϕ if and only if D is a cotrump for ϕ; D is a
cotrump for ∼ϕ if and only if it is a trump for ϕ.

44 Julian Bradfield and Stephan Kreutzer

• D is a trump (cotrump) for ↓ϕ if and only if D is a non-empty set of
members (non-members) of trumps of ϕ.

A trump for ϕ is essentially a set of winning positions for the model-
checking game for ϕ, for a given uniform strategy, that is, a strategy where
choices are uniform in the ‘hidden’ variables. The most intricate part of the
above definition is the clause for ∃y/W.ψ: it says that a trump for ∃y/W.ψ
is got by adding a witness for y, uniform in the W -variables, to trumps
for ψ.

In the absence of flattening, a cotrump is simply a trump for the game
negation of a formula, in other words a set of winning positions for Abelard
in the model-checking game. If one ignores flattening, it is not necessary to
maintain cotrumps in the semantics, and so we shall often elide them.

It is easy to see that any subset of a trump is a trump. In the case of
an ordinary first-order ϕ(~x), the set of trumps of ϕ is just the power set of
the set of tuples satisfying ϕ. To see how a more complex set of trumps
emerges, consider the following formula, which has x free: ∃y/{x}. x = y.
Any singleton set of deals is a trump, but no other set of deals is a trump.
Thus we obtain that ∀x.∃y/{x}. x = y has no trumps (unless the domain
has only one element).

The strangeness of the trump definitions is partly to do with some more
subtle features of IF logics, that we do not here have space to discuss, but
which are considered in detail in Ahti-Veikko Pietarinen’s thesis [Pie01].
However, to take one good example, raised by a referee, consider ϕ =
∃x.∃y/{x}. x = y. What are its trumps? As above, the trumps of
∃y/{x}. x = y are singleton sets of deals. The only potential trump for
ϕ is the set containing the empty deal D = {〈〉}. Applying the definition,
D is a trump for ϕ if and only if there is a singleton deal set {a} for x such
that there is a b such that {b} ⊆ {a}. The right hand side is true – take
b = a – so D is a trump. How come, if there is more than one element in A?
Surely we must choose y independently of x, and therefore ϕ can’t be true?
Not so: because the choices are both made by the same player (Eloise), she
can, as it were, make a uniform choice of y that, by ‘good luck’ agrees with
her previous choice of x. Since she is not in the business of making herself
lose, she will always do so. In game-theoretic terms, this is the difference
between requiring a strategy to make uniform moves, and requiring a player
to choose a strategy uniformly. In fact Hintikka and Sandu tried to hide this
issue by only allowing the syntax to express quantifications independent in
the other player’s variables, which is in practice all one wishes to use in any
case; but they also incorporated it by asserting that a player’s choices are
always independent of their own earlier choices, which is intuitively bizarre.

The Complexity of Independence-Friendly Fixpoint Logic 45

Hodges removed the syntactic restriction to make his semantics cleaner,
exposing the issue more obviously.

A sentence is said to be true if {〈〉} ∈ T (the empty deal is a trump
set), and false if {〈〉} ∈ C; this corresponds to Eloise or Abelard having a
uniform winning strategy. Otherwise, it is undetermined. Note that ‘false’
is reserved for a strong sense of falsehood – undetermined sentences are
also not true, and in the simple cases where negation and flattening are not
employed, an undetermined sentence is as good as false. Note also that the
game negation ∼ provides the usual de Morgan dualities, but that it cannot
be pushed through flattening.

2.4 IF-LFP

We now describe the addition of fixpoint operators to IF-FOL. This is
slightly intricate, although the normal intuitions for understanding fixpoint
logics still apply.

Definition 4. IF-LFP extends the syntax of IF-FOL as follows:

• There is a set Var = {X,Y, . . .} of fixpoint variables. Each variable X
has an arity ar(X).

• If X is a fixpoint variable, and ~t an ar(X)-vector of terms then X(~t)
is a formula.

• Let ϕ be a formula with free fixpoint variable X. ϕ has free indi-
vidual variables ~x = 〈x1, . . . , xar(X)〉 for the elements of X, together
with other free individual variables ~z; let fvϕ(X) be the length of
~z. Now if ~t is a sequence of ar(X) terms with free variables ~y, then
(µX(~x).ϕ)(~t)[~z, ~y] is a formula; provided that ϕ is IF-FOL+. In this
context, we write just fv(X) for fvϕ(X).

• Similarly for νX(~x).ϕ.

To give the semantics of IF-LFP, we first define valuations for free fixpoint
variables, in the context of some IF-LFP formula.

Definition 5. A fixpoint valuation V maps each fixpoint variable X to a
pair

(VT (X),VC(X)) ∈ (℘(℘(Aar(X)+fv(X))))2.

Let D be a non-empty set of deals for X(~t)[~x, ~z, ~y], where ~y are the free

variables of ~t not already among ~x, ~z. A deal d = ~a~c~b ∈ D, where ~a,~c,~b
are the deals for ~x, ~z, ~y respectively, determines a deal d′ = ~t(d)~c for X[~x, ~z].
Let D′ = { d′ | d ∈ D }. The set D is a trump for X(~t) if and only if
D′ ∈ VT (X); it is a cotrump if and only if D′ ∈ VCX.

46 Julian Bradfield and Stephan Kreutzer

The intuition here is that a fixpoint variable needs to carry the trumps
and cotrumps both for the elements of the fixpoint and for any free variables,
as we shall see below. Then we define a suitable complete partial order on
the range of valuations, which will also be the range of denotations for
formulae; it is simply the inclusion order on trump sets and the reverse
inclusion order on cotrump sets:

Definition 6. If (T1, C1) and (T2, C2) are elements of (℘(℘(An)))2, define
(T1, C1) � (T2, C2) if and only if T1 ⊆ T2 and C1 ⊇ C2.

This order gives the standard basic lemma for fixpoint logics:

Lemma 7. If ϕ(X)[~x, ~z] is an IF-FOL+ formula and V is a fixpoint valua-
tion, the map on (℘(℘(Aar(X)+fv(X)))2 given by

(T,C) 7→ [[ϕ]]V[X:=(T,C)]

is monotone with respect to �; hence it has least and greatest fixpoints,
constructible by iteration from the bottom and top elements of the set of
denotations.

Thus we have the familiar definition of the µ operator:

Definition 8. [[µX(x).ϕ(X)[~x, ~z]]] is the least fixpoint of the map on
(℘(℘(Aar(X)+fv(X)))2 given by

(T,C) 7→ [[ϕ]]V[X:=(T,C)];

and [[νX(x).ϕ(x)[~x, ~z]]] is the greatest fixpoint. µζ
X,xϕ means the ζth ap-

proximant of µX(x).ϕ, defined recursively by µζ
X,xϕ = ϕ(

⋃

ξ<ζ µ
ξ
X,xϕ).

A distinctive feature of the definition, compared to the normal LFP def-
inition, is the way that free variables are explicitly mentioned. Normally,
one can fix values for the free variables, and then compute the fixpoint, but
because of independent quantification this is not possible in the IF setting.
For example, consider the formula fragment

∀z. . . . µX(x). . . . ∨ ∃y/{z}.X(y)

The independent choice of y means that the trumps for the fixpoint depend
on the possible deals for z, not just a single deal.

2.5 Examples of IF-LFP

In order to give some human-readable examples of IF-LFP, we here reproduce
a section from [Bra03]. For convenience, we introduce the abbreviation
ϕ⇒ ψ for ψ ∨ ∼ϕ provided that ϕ is atomic.

The Complexity of Independence-Friendly Fixpoint Logic 47

Let G = (V,E) be a directed graph. The usual LFP formula R(y, z) :=
(µ(X,x).z = x ∨ ∃w.E(x,w) ∧X(w))(y) asserts that the vertex z is reach-
able from y. Hence the formula ∀y.∀z.R(y, z) asserts that G is strongly
connected. Now consider the IF-LFP formula

∀y.∀z. (µ(X,x).z = x ∨ ∃w/{y, z}. E(x,w) ∧X(w))(y).

At first sight, one might think this asserts not only that every z is reachable
from every y, but that the path taken is independent of the choice of y and
z. This is true exactly if G has a directed Hamiltonian cycle, a much harder
property than being strongly connected.

Of course, the formula does not mean this, because the variable w is fresh
each time the fixpoint is unfolded. In the trump semantics, the denotation
of the fixpoint will include all the possible choice functions at each step,
and hence all possible combinations of choice functions. Thus the formula
reduces to strong connectivity.

It may be useful to look at the approximants of this formula in a little
more detail, to get some intuitions about the trump semantics. Considering
just

H := (µ(X,x).z = x ∨ ∃w/{y, z}. E(x,w) ∧X(w))[x, y, z],

we see that in computing each approximant, the calculation of
[[∃w/{y, z}. . . .]] involves generating a trump for every possible value of
a choice function f : x 7→ w. This is a feature of the original trump se-
mantics, and can be understood by viewing it as a second-order semantics:
just as the compositional Tarskian semantics of ∃x. ϕ(x) involves comput-
ing all the witnesses for ϕ(x), so computing the trumps of ∃x/{y}. ϕ in-
volves computing all the Skolem functions; and unlike the first-order case,
it is necessary to work with functions (as IF can express existential second-
order logic). Consequently, the nth approximant includes all states such
that x → f1(x) → f2f1(x) → . . . → fn . . . f1(x) = z for any sequence of
successor-choosing functions fi. Thus we see that the cumulative effect is
the same as for a normal ∃w, and the independent choice has indeed not
bought us anything.

It is, however, possible to produce a slightly more involved formula ex-
pressing the Hamiltonian cycle property in this inductively defined way, by
using the standard trick for expressing functions in Henkin quantifier logics.
We replace the formula H by

∀s.∃t/{y, z}. E(s, t) ∧ (µX(x).x = z ∨
∀u.∃v/{x, y, z, s, t}. (s = u⇒ t = v) ∧ (x = u⇒ X(v)))(y).

This works because the actual function f selecting a successor for every
node is made outside the fixpoint by ∀s.∃t/{y, z}. E(s, t) ∧ . . .; then inside

48 Julian Bradfield and Stephan Kreutzer

the fixpoint, a new choice function g is made so that X(g(x)), and g is
constrained to be the same as f by the clause (s = u ⇒ t = v). (The
reader who is not familiar with the IF/Henkin to existential second-order
translation might wish to ponder why ∀s.∃t/{y, z}. E(s, t)∧µ(X,x).x = z∨
(x = s⇒ X(t)) does not work.)

2.6 The issue of negation

As we remarked above, negation is a somewhat problematic concept in
IF logics. In the game-theoretic presentation, IF sentences may be true,
false, or undetermined. When we say that an IF logic is equivalent to a
classical logic, such as IF-FOL = Σ1

1, we mean that the IF formula is true
if and only if its classical equivalent is true. Hence if an IF sentence ϕ is
undetermined, its translation ϕ̂ is false; and so ∼ϕ is certainly not equivalent
to ¬ϕ̂. Hodges’ introduction of the ↓ operator provides a way to get classical
negation into IF sentences: if ϕ is an IF sentence that is undetermined, it
has neither trumps nor cotrumps; hence ↓ϕ has the empty deal as a co-
trump, since 〈〉 is a non-member of the co-trumps of ϕ; and so ∼↓ϕ is true.
The intuitive interpretation of ↓ on formulae with free variables is unclear,
and its combination with game negation more so. Indeed, there is not a
simple game account of the flattening operator.

The arguments we apply in the following results rely largely on the abil-
ity to simulate operations on functions by operations on trumps. It is un-
clear to us how to combine boolean negation on the functional side with
game/flattening negation on the trump side. The model-checking upper
bound holds also for the full IF logic with negation and flattening; and the
complexity lower bounds hold a fortiori for the full logic. However, our
lower bounds, obtaining by translating from classical logic to IF logic, use
various techniques to avoid having to translate classical negation to IF nega-
tion, and it would be useful to know whether additional power is obtained
from IF negation.

3 Second-order inductions and independence-friendly

logics

It has been known from the early studies of Henkin quantifiers [Wal70,
End70] that existential second-order sentences can be transformed into sen-
tences with the Henkin quantifier, and thus into IF-FOL. A technique
frequently used in our results is the translation of existential second order
inductions into IF-LFP. For this we show that the translation of existential
second-order logic into independence-friendly logic can be extended to a
translation of positive existential second-order inductions into independence-
friendly fixpoint logic. Throughout this paper we only consider finite struc-

The Complexity of Independence-Friendly Fixpoint Logic 49

tures. Therefore we only give the translation for finite structures here. We
first give a formal definition of positive Σ1

1-inductive formulae.

Definition 9. An (n, k)-ary third-order variable R is a variable interpreted
by a set whose members are n-tuples of k-ary functions. Let, for some
k, n < ω, R be a (n, k)-ary third-order variable. A formula ϕ(R, f1, . . . , fn)
is Σ1

1-inductive if it is built up by the usual formula building rules for Σ1
1

augmented by a rule that allows the use of atoms Rf1 . . . fn, where the
fi are k-ary function symbols, provided that the variable R is only used
positively in ϕ.

Σ1
1-inductive formulae ϕ can be used to define least fixpoint inductions in

the same way as first-order formulae with a free relation variable in which
they are positive are used to define fixpoint inductions. So we can define
the stages Rα, α < ω, of the fixpoint induction in ϕ which ultimately lead
to the least fixpoint of the operator defined by the formula ϕ. We call
a relation that is obtained as the least fixpoint of a Σ1

1-inductive formula
Σ1

1-inductive. Note, that the Σ1
1-inductive relations are third-order objects,

i.e., sets of functions.
We show next that any Σ1

1-inductive third-order relation R can be defined
by an IF-LFP-formula in the sense that there is a formula ϕ(R, ~x, y), positive
in the second-order variable R, such that the maximal trumps in the least
fixpoint of the operator defined by ϕ are precisely the graphs of the functions
in R. For the sake of simplicity, we only consider the case of (1, k)-ary
inductions, i.e., where the fixpoint is a set of functions.

An important concept used in the following proofs is the notion of func-

tional trumps; and a technically useful concept is that of maximal trumps.

Definition 10. Let ϕ(~x, y) be a formula. A trump T for ϕ is functional in

~x and y, if for all pairs (~a, b), (~a′, b′) of deals in T we have b = b′ whenever
~a = ~a′. T is maximal if there is no T ′) T that is a trump for ϕ.

Note that because any subset of a trump is a trump, the trumps of a
formula are determined by its maximal trumps. Of course, any subset of a
functional trump is functional.

Notation. In the following proofs we will frequently use a construction like

∀~x/{~x1, y1, . . . , ~xn, yn}∃y/{~x1, y1, . . . , ~xn, yn}
(

(~x = ~x1 → y = y1) ∧ ϕ
)

for some formula ϕ. We will abbreviate this by

∀~x∃y clone(~x1, y1; ~x2, y2 . . . , ~xn, yn)ϕ.

and we will usually omit the list (~x2, y2 . . . , ~xn, yn) of other variables which
appear in the independence sets of the quantifiers, assuming that all other

50 Julian Bradfield and Stephan Kreutzer

variables than the clones and originals are in that list. Essentially, this
formula says that the Skolem functions fy and fy1

chosen for y and y1, re-
spectively, are the same. The next lemma makes this precise and establishes
some useful properties of the clone construction.

Lemma 11. Let A be a structure and let ~x be a k-tuple of variables.

(i) Let ψ be a formula defined as ψ(~x, y) := ∀~x′∃y′clone(~x, y)ψ′. Then the
trumps for ψ are precisely the sets of deals (. . . ,~a, f(~a)) for ~a ∈ A|~x|

functional in ~x and y with some Skolem function f , such that the deals
(. . . ,~a, f(~a),~a′, f(~a′)) for ~a ∈ A|~x| form a trump for ψ′. In particular,
if ψ′ is the formula true, then the trumps of ψ are exactly the sets of
deals functional in ~x and y.

(ii) Let ϕ(~x′, y′) be a formula with only functional trumps and let ψ be
defined as ψ(~x, y) := ∀~x′∃y′clone(~x, y) ϕ. Then the trumps for ψ and
the trumps for ϕ are the same, in the sense that for every trump T ′ ⊆
Ak+1 of ϕ there is a trump T ⊆ Ak+1 of ψ such that an assignment of
elements ~a to the variables ~x′ and b to y′ is a deal in T ′ if, and only if,
the corresponding assignment of ~a to ~x and b to y is a deal in T and,
conversely, for every trump T of ψ there is a corresponding trump T ′

for ϕ.

Proof. We first prove Part (i) of the lemma. Following our notation, the
formula ψ is an abbreviation for

∀~x′/{~x, y}∃y′/{~x, y}(~x = ~x′ → y = y′) ∧ ψ′.

Towards a contradiction, suppose there was a non-functional trump T for
ψ, i.e., T contains deals (~a, b) and (~a, b′) for some ~a and b 6= b′. By the
semantics of universal quantifiers, this implies that there must be a trump
for ∃y1/{~x, y}(~x = ~x′ → y = y′) ∧ ψ′ containing (~a, b,~a) and (~a, b′,~a). But
then, the set {(~a, b,~a), (~a, b′,~a)} is a {~x, y}-set (recall Definition 3). Hence
there must be a trump T ′ for (~x = ~x′ → y = y′) ∧ ψ′ and an element c so
that T ′ contains the deals (~a, b,~a, c) and (~a, b′,~a, c). But this is impossible

as not both b = c and b′ = c can be true but obviously every deal (~d, e, ~d′, e′)

in a trump for (~x = ~x′ → y = y′) satisfies the condition that if ~d = ~d′ then
also e = e′. Finally, if T is a functional trump, then the corresponding T ′

must be a trump for ψ′, and so the deals (~a, b,~a, b) must be a trump for ψ′.

Part (ii) of the lemma follows analogously. q.e.d.

The next lemma shows that every formula in Σ1
1 is equivalent to a formula

in IF-LFP. The proof of the lemma follows easily from the work on Henkin-

The Complexity of Independence-Friendly Fixpoint Logic 51

quantifiers. However, as we need the lemma also for formulae with free
function variables we give an explicit translation of Σ1

1-formulae into IF-FOL.

Lemma 12. Let ϕ(f1, . . . , fn) be a Σ1
1-formula with free function variables

f1, . . . , fk. Then there is a formula ϕ̂(~xf1
, yf1

, . . . , ~xfk
, yfk

) ∈ IF-FOL such
that for every structure A a set T is a maximal trump for ϕ̂ if, and only if,
there are functions F1, . . . , Fk such that A |= ϕ(F1, . . . , Fk) and

T = {(~a1, b1, . . . ,~ak, bk) : Fi(~ai) = bi for all 1 ≤ i ≤ k}.

Proof. We first present the standard translation of Σ1
1 into independence-

friendly first-order logic (in a less efficient but more transparent form than
normal). Let ψ be a first-order formula containing a free function variable g.
For the variable g, introduce variables ~x0, y0, and for each of the i = 1, . . . , n
applications g(~ti) of g introduce variables ~xi, yi. Then the Σ1

1 sentence ∃g. ψ

is translated to ψ̂0 = ∀~x0.∃y0. ψ̂1, where

ψ̂i = ∀~xi.∃yi. clone(~xi−1, yi−1)ψ̂i+1

for i = 1, . . . , n, and ψ̂n+1 is ψ with each g-containing atom Q(g(~ti)) re-
placed by ~xi = ~ti ⇒ Q(yi).

We can stop short of the final ∃f , and translate ψ itself to ψ̂1, giving the
lemma for one function symbol. By Lemma 11(i), the trumps for ψ̂n are
the sets of deals functional in ~xn−1 and yn−1 such that when extended by
a Skolem function they are trumps for ψ̂n+1. Now ψ̂n+1 is classical, so its
trumps are just the sets of deals satisfying it classically.

Now repeated application of Lemma 11 to ψ̂n−1, . . . , ψ̂1 that the trumps
for ψ̂1 are functional in ~x0 and y0, with a Skolem function g such that ψ̂n+1

is true when every yi is replaced by g(~xi), as required.
It remains to deal with multiple function variables, and to allow some

of them to be explicitly closed by existential quantification. To manage
multiple function symbols, it is easiest to process them in parallel: if we
are dealing with g and h, then extend the above translation to work simul-
taneously with ~x, y for g and ~u, v for h, in the obvious way: put both sets
of function-constraining conjuncts in, and both sets of ∀∃ quantifiers. The
two sets of variables should made independent of each other. (This would
look much more obvious in Henkin quantifier notation.) If it is desired to
quantify some of the function variables by ∃, then simply apply the final
stage of the translation to those variables. q.e.d.

We are now ready to prove the main theorem of this section.

52 Julian Bradfield and Stephan Kreutzer

Theorem 13. Let R be a (1, k)-ary third-order variable and let ϕ(R, f) be
a Σ1

1-inductive formula where f is a k-ary function symbol. Then there is a
formula ϕ∗(R, ~x, y) ∈ IF-LFP, where R is a k + 1-ary second-order variable
that only occurs positively in ϕ and ~x is a k-tuple of variables, such that
the least fixpoint R∞ of ϕ satisfies the following properties.

1. Every trump T in R∞ is functional.
2. Every maximal trump encodes the graph of a function in R∞ and,

conversely,
3. for every function f ∈ R∞ there is a trump T in R∞ encoding the

graph of f .

Proof. Let ϕ(R, f) be as in the statement of the theorem. Without loss of
generality we assume that ϕ has the form

ϕ(R, f0) := ϕ0(f0) ∨ ∃f1 . . . ∃fn

(

(

n
∧

i=1

Rfi) ∧ ϕ1

)

so that R does not occur in ϕ0 or ϕ1. (See [EbbFlu99] for a proof of this
normal form for existential first-order inductions. The proof for this case is
analogous.) The formula ϕ is translated into a formula ϕ̂(R, ~x, y) ∈ IF-LFP

defined as follows:

ϕ̂(R, ~x, y) := ∀~x1.∃y1.clone(~x, y)
(

ψ0(~x, y) ∨ ψ1(R, ~x1, y1)
)

where
ψ0(~x, y) := ∀~xf0

∃yf0
clone(~x, y) ϕ̂0(~xf0

, yf0
)

and
ψ1(R, ~x1, y1) := ∀~xf0

∃yf0
clone(~x1, y1) ψ

′
1(~xf0

, yf0
)

and

ψ′
1(R, ~xf0

, yf0
) := ∀~xf1

∃yf1
. . . ∀~xfn

∃yfn
∧n

i=1(∀~x
′∃y′clone(~xfi

, yfi
)R~x′y′) ∧

ϕ̂1(~xf0
, yf0

, ~xf1
, yf1

, . . . , ~xfn
, yfn

).

We claim that the formula ϕ̂ satisfies the properties stated in the theorem.
Let A be a structure with universe A. By Lemma 11(i), the trumps T for
are functional in ~x and y, with Skolem function g such that g satisfies ψ0

or ψ1.
We show by ordinal induction that every maximal trump in Rα is the

graph of a function in Rα and, conversely, the graph of every function in Rα

The Complexity of Independence-Friendly Fixpoint Logic 53

is a trump in Rα. For limit ordinals (including 0) this follows immediately
from the induction hypothesis.

Now let α = 1. We show first that every maximal trump in R1 is the
graph of a function in R1. By definition, R0 = ∅ and therefore the sub-
formula ψ1 can not be satisfied by any trump. Hence, the only trumps in R1

are the functional trumps for ψ0. By Lemma 12, a set T ⊆ Ak+1 is a trump
for ϕ̂0 if, and only if, there is a function f : Ak → A such that (A, f) |= ϕ0

and for all deals (~a, b) ∈ T we have f(~a) = b. Hence, the maximal trumps
for ϕ̂0 are precisely the graphs of functions satisfying ϕ0. Thus, by Part (ii)
of Lemma 11, we get that the maximal trumps for ∀~x1∃y1clone(~x, y) ϕ̂0 are
the graphs of functions satisfying ϕ0.

Conversely, let f be a function satisfying ϕ0. By Lemma 12 the trump
T := {(~a, b) : f(~a) = b} is a trump for ϕ̂0 and hence for ∀~x1∃y1clone(~x, y) ϕ̂0.

Now let α > 1 be a successor ordinal, i.e., α = β+1 for some β > 0. Again
we first show that every maximal trump in Rα is the graph of a function
f ∈ Rα. This is clear for all trumps of ψ0 as they are already contained in
R1. Now consider the formula ψ1. For simplicity we assume without loss of
generality that all tuples ~xf0

, . . . , ~xfn
are of arity k. By Lemma 12, the max-

imal trumps for ϕ̂1 are the sets T ⊆ A(n+1)(k+1) such that there are func-
tions f0, . . . , fn satisfying ϕ1 and for all tuples (~a0, b0, . . . ,~an, bn) we have
(~a0, b0, . . . ,~an, bn) ∈ T if, and only if, fi(~ai) = bi for all i. Further, applying
the induction hypothesis and Lemma 11, we get that the maximal trumps
for

∧n
i=1(∀~x

′∃y′clone(~xfi
, yfi

) R~x′y′) are sets T of deals such that there are
functional trumps T1, . . . , Tn ∈ Rβ which, by induction hypothesis, are the
graphs of functions f1, . . . , fn ∈ Rβ , and for all tuples (~a1, b1, . . . ,~an, bn)
we have (~a1, b1, . . . ,~an, bn) ∈ T if, and only if, fi(~ai) = bi for all i. Thus,
every maximal trump of

∧n
i=1(∀~x

′∃y′clone(~xfi
, yfi

) R~x′y′)∧ ϕ̂1 is functional
in ~xf0

and yf0
and this function f satisfies ϕ1 for some interpretation of the

variables f1, . . . , fn by functions from Rβ . Therefore f is contained in Rα.
Thus, by Lemma 11, every maximal trump for ψ1 encodes the graph of such
a function f ∈ Rα.

The converse is again easily seen. For every function f ∈ Rα\Rβ choose
functions f1, . . . , fn ∈ Rβ so that A |= ϕ1(f0, . . . , fn). By induction hypoth-
esis, the graphs of these functions are trumps in Rβ . Hence, we can choose
these trumps in the conjunction

∧n
i=1(∀~x

′∃y′clone(~xi, yi) R~x
′y′). Lemma

12, then, establishes the claim. q.e.d.

4 Independence-Friendly vs. Partial Fixpoint Logic

By definition, independence-friendly fixpoint logic is a least fixpoint logic.
However, contrary to the fixpoint logics usually considered in finite model

54 Julian Bradfield and Stephan Kreutzer

theory, here the fixpoints are not sets of elements but sets of trumps and
therefore essentially third-order objects. In particular, it is no longer guar-
anteed that any fixpoint induction closes in polynomially many steps in the
size of the structure – to the contrary, it may take an exponential number of
steps to close. We will see below, that this greatly increases the expressive
power of IF-LFP compared to normal least fixpoint logics.

As a first step in this direction we relate independence-friendly fixpoint
logic to partial fixpoint logic. Partial fixpoint logic is an important logic in
finite model theory. Among the various fixpoint logics commonly considered
in finite model theory, it is the most expressive subsuming logics such as
LFP and IFP and, on ordered structures, even second-order logic SO.

Definition 14 (Partial Fixpoint Logic). Partial fixpoint logic (PFP) is
defined as the extension of first-order logic by the following formula building
rule. If ϕ(R, ~x) is a formula with free first-order variables ~x := x1, . . . , xk

and a free second-order variable R of arity k, then ψ := [pfpR,~x ϕ](~t) is also

a formula, where ~t is a tuple of terms of the same length as ~x. The free
variables of ψ are the variables occurring in ~t and the free variables of ϕ
other than ~x.

Having defined the syntax, we now turn to the definition of the semantics.
Let ψ := [pfpR,~x ϕ](~t) be a formula and let A be a finite structure with
universe A providing an interpretation of the free variables of ϕ other than
~x. Consider the following sequence of stages induced by ϕ on A, where Fϕ

is the functional defined by ϕ.

R0 := ∅

Rα+1 := Fϕ(Rα)

As there are no restrictions on ϕ, this sequence need not reach a fixpoint. In
this case, ψ is equivalent on A to false. Otherwise, if the sequence becomes
stationary and reaches a fixpoint R∞, then for any tuple ~a ∈ A,

A |= [pfpR,~x ϕ](~a) if, and only if, ~a ∈ R∞.

As mentioned above, PFP is among the fixpoint logics commonly con-
sidered in finite model theory the most expressive – especially on ordered
structures. A central issue in finite model theory is to relate the expres-
sive power of logics to the computational complexity of classes of structures
definable in the logic. Of particular interest are so-called capturing results.

Definition 15. A logic L captures a complexity class C if every class of
finite structures definable in L can be decided in C and conversely, for every
class C of finite structures which can be decided in C there is a sentence
ϕ ∈ L such that for all structures A, A |= ϕ if, and only if, A ∈ C.

The Complexity of Independence-Friendly Fixpoint Logic 55

Capturing results are important as in the case that a logic L captures a
complexity class C, the logic provides a logical characterisation of the com-
plexity class, i.e., a characterisation independent of any machine models or
time or space bounds. In particular, non-expressibility results on L transfer
directly into non-definability results on C. As such results are notoriously
hard to come by, capturing results provide an interesting alternative for
proving non-definability of problems in a complexity class.

Much effort has been spent on capturing results and for all major com-
plexity classes such results have been found (see [EbbFlu99] for a summary).
However, in many cases it could only be shown that a logic captures a com-
plexity class on the class of ordered structures.

Theorem 16 (Abiteboul, Vianu, [AbiVia89]). Partial fixpoint logic
captures PSpace on the class of finite ordered structures.

As every class of structures definable in second-order logic is decidable
in the polynomial time hierarchy, it follows immediately that PFP contains
SO on ordered structures. One feature that makes PFP so expressive is its
ability to define fixpoint inductions of exponential length in the size of the
structure. We show next that every formula of PFP is equivalent to one in
IF-LFP.

Theorem 17. For every formula ϕ ∈ PFP there is an equivalent formula
ψ ∈ IF-LFP.

Proof. It is known that every PFP formula is equivalent to one with a single
fixpoint, so we need deal only with a PFP formula pfpR,~xϕ(R, ~x), where ϕ is
first order. We assume that the fixpoint of ϕ always exists. See [EbbFlu99]
for a proof that both assumptions can be made without loss of generality.

To calculate a partial fixpoint, one needs to check whether two consec-
utive stages of the inductive approximation are equal, and so one needs to
use the stages both positively and negatively. We get round this by building
up the relation and its complement simultaneously. Let ϕp be the negation
normal form of ϕ and ϕn be the negation normal form of ¬ϕ. Further, let
k be the arity of ~x, i.e., the number of free variables in ϕ. Consider the
following Σ1

1 formula ψ(P, f), where P is a third-order relation symbol and
f is a k-ary function symbol:

ψ(P, f) := ∀~x
(

(ϕp(∅, ~x) ∧ f(~x) = 1) ∨ (ϕn(∅, ~x) ∧ f(~x) = 0)
)

∨
∃f′ ∈ P∀~x

(

(ϕp(~x,R~u/f′(~u) = 1,¬R~u/f′(~u) = 0) ∧ f(~x) = 1)
∨(ϕn(~x,R~u/f′(~u) = 1,¬R~u/f′(~u) = 0) ∧ f(~x) = 0)

)

By ϕp(~x,R~u/f′(~u) = 1,¬R~u/f′(~u) = 0) we mean the formula obtained
from ϕp by replacing every positive occurrence of an atomR~u, for some tuple

56 Julian Bradfield and Stephan Kreutzer

~u of terms, by f′(~u) = 1 and every negative occurrence of an atom R~u, for
some tuple ~u of terms, by f′(~u) = 0. Thus the formula ψ obtained in this way
is positive in P and its least fixpoint exists. We claim that for all functions
f ∈ R∞ the set {~a : f(~a) = 1} is a stage in the induction on ϕ. This is clear
for the function f satisfying ((ϕp(∅, ~x)∧ f(~x) = 1)∨ (ϕn(∅, ~x)∧ f(~x) = 0))
as f encodes the first stage of the induction on ϕ. Further, if f′ ∈ P∞

encodes a stage Rα of the induction on ϕ in the sense described above, then
the function f satisfying

(ϕp(~x,R~u/f′(~u) = 1,¬R~u/f′(~u) = 0) ∧ f(~x) = 1) ∨
(ϕn(~x,R~u/f′(~u) = 1,¬R~u/f′(~u) = 0) ∧ f(~x) = 0)

encodes the next stage Rα+1.
Thus the formula [pfpR,~xϕ](~x) is equivalent to the formula

ϑ(~x) := ∃f f(~x) = 1 ∧ [µP (f).ψ](f) ∧ ∀~x(ϕ(~x,R~u/f(~u) = 1) ↔ f(~x) = 1)

stating that there is a function f in the fixpoint of the Σ1
1-formula ψ, f is

the partial fixpoint of ϕ, and ~x occurs in this partial fixpoint, i.e., f(~x) = 1.

Now, the theorem follows from Lemma 12. q.e.d.

We have already mentioned that pure independence-friendly logic is equiv-
alent to Σ1

1 and therefore an ordering on the universe of a structure can be
defined in IF-LFP even on classes of otherwise unordered structures. Thus
the theorem above implies that IF-LFP contains SO on all rather than just
ordered structures.

Corollary 18. On finite structures, every formula of SO is equivalent to a
formula in IF-LFP.

In the next section we will derive some further corollaries of this theorem
concerning the model-checking complexity of IF-LFP.

5 Complexity of Independence-Friendly Fixpoint

Logic

In this section we analyse the complexity of IF-LFP on finite structures, both
with respect to data and model-checking complexity. By data-complexity
we understand the complexity of deciding for a fixed formula ϕ ∈ IF-LFP and
a given structure A whether A |= ϕ. In particular, the input only consists
of the structure A. By model-checking we mean the problem of deciding for
a given finite structure A and formula ϕ ∈ IF-LFP whether A |= ϕ. Here,
both ϕ and A are part of input.

The Complexity of Independence-Friendly Fixpoint Logic 57

We begin our analysis with data-complexity. In [Bra03], the first author
already noticed that any given formula of IF-LFP can be evaluated in time
exponential in the size of the structure. For, every fixpoint µR(~x).ϕ (or
νR(~x).ϕ) can be evaluated in time linear in the number of trumps for ϕ and
therefore exponential in the size of the structure.

Proposition 19. IF-LFP has exponential time data-complexity.

We aim at a much stronger result. Not only will we show that IF-LFP is
ExpTime-complete with respect to data-complexity but we will prove that
it actually captures ExpTime, i.e., every class of structures decidable by
an exponential time Turing-machine can be defined in IF-LFP and vice versa
every class of structures definable in IF-LFP can be decided in deterministic
exponential time.

Theorem 20. IF-LFP captures ExpTime.

Proof. We follow the usual approach to show capturing results in finite
model theory by simulating the run of a Turing-machine by a fixpoint in-
duction in IF-LFP. LetM be an exponentially time-bounded Turing-machine

over the alphabet {0, 1}. On any input of size n, M can make at most 2nk

steps, for some constant k independent of the input. We first show how to
simulate the run of M on any input structure A by an third-order induction
on a Σ1

1-formula, i.e., by a formula of the form µR(s, p, c).ϕ(R, s, p, c), where
ϕ ∈ Σ1

1, s and p are k-ary function symbols, c is an individual variable and
R is a third-order relation symbol. (Strictly speaking, individual variables c
are not allowed in Σ1

1-inductions as defined in Definition 9. However, these
can easily be replaced by nullary function variables.) Throughout this proof
we use typewriter font for function variables and italics font for individual
variables.

As an ordering on the universe A of the structure A is definable in Σ1
1

we assume without loss of generality that A is ordered and that there are
two constants 0 and 1 interpreted by distinct elements. Further, we assume
that we are given an ordering on the space of functions from Ak to {0, 1}.
Again such an ordering can easily be defined in Σ1

1.
Given this ordering on the function space, we can code the content of

the Turing-tape in a relation P (p, c) such that (p, c) ∈ P if, and only if,
p is the ith function with respect to the ordering on the space of k-ary
functions, c ∈ {0, 1}, and the ith cell on the Turing-tape contains c. With
this, we can encode the evolution of the Turing-tape during a run of M
in a relation R(s, p, c), such that if s is the ith function with respect to
the ordering on the function space, then the set {(p, c) : (s, p, c) ∈ R}
encodes the Turing-tape after M has made i steps. To define this relation
inductively, we need a formula init(p, c) which defines the encoding of the

58 Julian Bradfield and Stephan Kreutzer

input structure A on the Turing-tape with the head reading position 0 and
a formula next(R, s, p, c) which defines for any given s in (p, c) the successor
configuration of the configuration stored in R for time step s. Finally, we
need a formula accept(R, s) which is true for s and R if the configuration
coded in R for time step s is accepting.

Due to space restrictions we refrain from giving the formulae here. Sim-
ilar formulae are widely used in the finite model theory community to en-
code the run of polynomial time Turing-machines in LFP. See [Grä007] or
[EbbFlu99]. The Σ1

1-formulae needed here can be obtained from these via
trivial modifications implementing the above encoding of Turing-tapes and
time steps. Now the run of M on input A is accepting if, and only if, the
formula

∃s, p [µR(s, p, c).
(s = min ∧ init(p, c)) ∨
(∃s′ (s = s′ + 1 ∧ next(s′, p, c))) ∨
(∃saccept(R, s) ∧ c = acc)

](s, p,acc)

is true in A, where min denotes the minimal element in the ordering on
the function space, +1 refers to the successor relation with respect to this
ordering, and acc is an arbitrary element distinct from 0 and 1 used to
mark an accepting configuration. q.e.d.

Clearly, if a logic L captures a complexity class C, then the evaluation
problem of L must be C-complete with respect to data complexity. Thus
we get the following simple corollary.

Corollary 21. IF-LFP has ExpTime-complete data-complexity.

Capturing results relate the expressive power of a given logic to the com-
putational complexity of the classes of structures definable in the logic.
The study of data complexity corresponds to the study of the computa-
tional complexity of a problem, where the size of the program or algorithm
used to solve a problem is ignored.

However, when actually evaluating a formula in a structure this approach
is not satisfactory. For instance, monadic Datalog and monadic second-
order logic (MSO) have the same expressive power on trees and therefore the
same data-complexity on trees, but whereas monadic Datalog programs
can be evaluated in time linear both in the size of the Datalog program
and the input tree, the evaluation of MSO-formulae is PSpace-complete on
trees. In fact, it was shown in [GroSch1003] that any translation of a MSO-
formula on trees to an equivalent monadic Datalog program necessarily
increases the formula size non-elementary.

Thus, data-complexity only gives limited information about the complex-
ity of actually evaluating a formula in a structure. We therefore continue

The Complexity of Independence-Friendly Fixpoint Logic 59

our complexity analysis of IF-LFP with the study of its model-checking com-
plexity. In particular, we will prove that model-checking for IF-LFP is hard
for exponential space. For an upper bound, it is easily seen that for any
given structure A and formula ϕ the formula can be evaluated in A using
space doubly exponential in |ϕ| and exponential in |A|. For, every evalu-
ation of a (least or greatest) fixpoint only needs enough space to store all

possible trumps, and the number of trumps is bounded by O(2A|ϕ|

).

Theorem 22. Every formula ϕ ∈ IF-LFP can be evaluated in a structure
A in space doubly exponential in |ϕ| and exponential in |A|.

The theorem gives an upper bound on the model checking complexity
of IF-LFP. We have seen in Section 4 above that every formula of PFP is
equivalent to one of IF-LFP. Further, the translation is polynomial in the
size of the PFP-formula. Consequently, model-checking for IF-LFP is at least
as complex as it is for PFP. As model-checking for PFP is known to be hard
for exponential space – in fact even complete for exponential space – we get
the following theorem.

Theorem 23. The model-checking problem for IF-LFP is hard for expo-
nential space.

6 Conclusion

In this paper we studied the computational complexity of various problems
related to IF-LFP. As we have seen, adding independence to least fixpoint
logic increases the expressive power and complexity significantly. Another
indicator for this is the translation of formulae of PFP to formulae of IF-LFP.
This showed that IF-LFP is even more expressive than second-order logic –
unless, of course, PSpace = ExpTime.

Looking at the various proofs given for the results, it becomes clear that
the common technique used in all proofs was to use independent quantifi-
cation to define functions and then show that these functions can be passed
through the fixpoint induction. This suggests that there might be a more
general relation between independence-friendly logic and second-order logic,
namely that the two logics are actually equivalent. Showing this, however,
requires a careful analysis of the rôle of negation in independence friendly
logics and is far from obvious. This is part of ongoing work.

It is also notable that all our hardness results involve constructions re-
quiring only least fixed points. For LFP, it is well-known that all properties
can be expressed with a single least fixed point. An analogous theorem of
IF-LFP has not been shown.

60 Julian Bradfield and Stephan Kreutzer

References.

[AbiVia89] Serge Abiteboul and Victor Vianu, Fixpoint Extensions of First-
Order Logic and Datalog-like Languages, in: [Mey89, p. 71–79]

[BaaMak103] Matthias Baaz and Johann A. Makowsky (eds.), Computer Sci-
ence Logic, Proceedings of the 17th International Workshop, CSL
2003, 12th Annual Conference of the EACSL, and 8th Kurt Güdel
Colloquium, KGC 2003, Vienna, Austria, August 25-30, 2003,
Springer 2003 [Lecture Notes in Computer Science 2803]

[Bra99] Julian C. Bradfield, Fixpoints in Arithmetic, Transition sys-
tems and Trees, Theoretical Informatics and Applications
33 (1999), p. 341–356

[Bra00] Julian C. Bradfield, Independence: Logics and Concurrency, in:

[CloSch1100, p. 247–261]

[Bra03] Julian C. Bradfield, Parity of Imperfection, in: [BaaMak103,
p. 72–85]

[BraFrö02] Julian C. Bradfield and Sibylle B. Fröschle, Independence-
Friendly Modal Logic and True Concurrency, Nordic Journal
of Computing 9 (2002), p. 102–117

[CloSch1100] Peter Clote and Helmut Schwichtenberg (eds.), Computer Sci-
ence Logic, Proceedings of the 14th Annual Conference of the
EACSL, Fischbachau, Germany, August 21-26, 2000, Springer
2000 [Lecture Notes in Computer Science 1862]

[EbbFlu99] Heinz-Dieter Ebbinghaus and Jörg Flum, Finite Model Theory,
2nd edition, Springer 1999

[End70] Herbert B. Enderton, Finite Partially Ordered Quantifiers,
Zeitschrift für Mathematische Logik und Grundlagen der
Mathematik 16 (1970), p. 393–397

[Grä007] Erich Grädel, Finite Model Theory and Descriptive Complexity,
in: [Grä0+07, p. 125–230],

[Grä0+07] Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten
Marx, Joel Spencer, Moshe Y. Vardi, Yde Venema, and Scott
Weinstein, Finite Model Theory and Its Applications, Springer
2007 [EATCS Series Texts in Theoretical Computer Science]

[GroSch1003] Martin Grohe and Nicole Schweikardt, Comparing the Suc-
cinctness of Monadic Query Languages over Finite Trees, in:

[BaaMak103, p. 226–240]

[HinSan196] Jaakko Hintikka and Gabriel Sandu, A Revolution in Logic?,
Nordic Journal of Philosophical Logic 1 (1996), p. 169–183

[Hod097] Wilfried Hodges, Compositional Semantics for a Language of
Imperfect Information, Logic Journal of the IGPL 5 (1997),
p. 539–563

[Mey89] Albert Meyer (ed.), Proceedings of the 4th Annual IEEE Sym-
posium on Logic in Computer Science, Asilomar, California, June
5-8, 1989, IEEE Computer Society Press 1989

[Pie01] Ahti-Veikko Pietarinen, Semantic Games in Logic and Language,
PhD thesis, University of Helsinki 2001

The Complexity of Independence-Friendly Fixpoint Logic 61

[Wal70] Wilbur J. Walkoe, Finite Partially-Ordered Quantification, The
Journal of Symbolic Logic 35 (1970), p. 535–555

Received: April 2nd, 2005;

In revised version: September 16th, 2005;

Accepted by the editors: October 31st, 2005.

