
A Taste of UML
with text-processing flavour added!

Julian Bradfield
School of Informatics, University of Edinburgh

Acknowledgements: some material drawn from lectures by several
colleagues at Edinburgh: Perdita Stevens, Nigel Goddard, Paul Jackson



Outline

I Software Engineering and UML

I Practical interlude: making some UML diagrams

I Text processing to extract UML diagrams

2



Introduction

Software Engineering is the application of the principles of engineering to
building (large) software systems.

‘Large’? Will you ever write/work on a large program?

1000 lines of R?

10k lines of Python ?

50M lines of C?

Using SE techniques can be useful even for small-ish systems – especially
if it’s not just you!

3



Who’s this?

Margaret Hamilton
in 1969.

Led team that developed
Apollo space mission
software.

That’s its source code!
(About 145,000 lines.)

http://news.mit.edu/2016/scene-at-mit-margaret-hamilton-apollo-code-0817

4

http://news.mit.edu/2016/scene-at-mit-margaret-hamilton-apollo-code-0817


Who’s this?

Margaret Hamilton
in 1969.

Led team that developed
Apollo space mission
software.

That’s its source code!
(About 145,000 lines.)

http://news.mit.edu/2016/scene-at-mit-margaret-hamilton-apollo-code-0817

4

http://news.mit.edu/2016/scene-at-mit-margaret-hamilton-apollo-code-0817


Introduction

Software Engineering is the application of the principles of engineering to
building (large) software systems.

‘Large’? Will you ever write/work on a large program?

1000 lines of R?

10k lines of Python ?

50M lines of C?

Using SE techniques can be useful even for small-ish systems – especially
if it’s not just you!

5



Introduction

Software Engineering is the application of the principles of engineering to
building (large) software systems.

‘Large’? Will you ever write/work on a large program?

1000 lines of R?

10k lines of Python ?

50M lines of C?

Using SE techniques can be useful even for small-ish systems – especially
if it’s not just you!

5



Introduction

Software Engineering is the application of the principles of engineering to
building (large) software systems.

‘Large’? Will you ever write/work on a large program?

1000 lines of R?

10k lines of Python ?

50M lines of C?

Using SE techniques can be useful even for small-ish systems – especially
if it’s not just you!

5



Introduction

Software Engineering is the application of the principles of engineering to
building (large) software systems.

‘Large’? Will you ever write/work on a large program?

1000 lines of R?

10k lines of Python ?

50M lines of C?

Using SE techniques can be useful even for small-ish systems – especially
if it’s not just you!

5



Introduction

Software Engineering is the application of the principles of engineering to
building (large) software systems.

‘Large’? Will you ever write/work on a large program?

1000 lines of R?

10k lines of Python ?

50M lines of C?

Using SE techniques can be useful even for small-ish systems – especially
if it’s not just you!

5



Modular design

Any system larger than [how many?] lines can only be understood by
separating it into several modules.

A module is a fairly self-contained collection of code.

A module provides a small and controlled number of ways for other
modules to talk to it or use it.

A text processing system might contain a tokenizer, POS-tagger, ontology
engine, semantic analyser and many others.

The ontology engine does not need to know how the tokenizer works; and
the tokenizer should not be able to update the ontology!

6



Modular design

Any system larger than [how many?] lines can only be understood by
separating it into several modules.

A module is a fairly self-contained collection of code.

A module provides a small and controlled number of ways for other
modules to talk to it or use it.

A text processing system might contain a tokenizer, POS-tagger, ontology
engine, semantic analyser and many others.

The ontology engine does not need to know how the tokenizer works; and
the tokenizer should not be able to update the ontology!

6



Modular design

Any system larger than [how many?] lines can only be understood by
separating it into several modules.

A module is a fairly self-contained collection of code.

A module provides a small and controlled number of ways for other
modules to talk to it or use it.

A text processing system might contain a tokenizer, POS-tagger, ontology
engine, semantic analyser and many others.

The ontology engine does not need to know how the tokenizer works; and
the tokenizer should not be able to update the ontology!

6



Modular design

Any system larger than [how many?] lines can only be understood by
separating it into several modules.

A module is a fairly self-contained collection of code.

A module provides a small and controlled number of ways for other
modules to talk to it or use it.

A text processing system might contain a tokenizer, POS-tagger, ontology
engine, semantic analyser and many others.

The ontology engine does not need to know how the tokenizer works; and
the tokenizer should not be able to update the ontology!

6



Object-oriented design

is the current mainstream way of doing modular design. Python is a more
or less OO language.

Key concepts:

I An object in your program represents some (complex) piece of data.
E.g. a particular copy of a book in the library.

I Objects have attributes – the simple data they contain. E.g. the title
of a book, or the library barcode number of a copy of a book.

I They also have methods – functions that do something to, or return
information from, the object. E.g. check out the book, or query its
current loan status.

I The class of an object defines its attributes and methods. (The
actual values of attributes belong to individual objects; methods
belong to the class.) E.g. the class of book copies, the class of
library users.

7



Object-oriented design

is the current mainstream way of doing modular design. Python is a more
or less OO language.

Key concepts:

I An object in your program represents some (complex) piece of data.
E.g. a particular copy of a book in the library.

I Objects have attributes – the simple data they contain. E.g. the title
of a book, or the library barcode number of a copy of a book.

I They also have methods – functions that do something to, or return
information from, the object. E.g. check out the book, or query its
current loan status.

I The class of an object defines its attributes and methods. (The
actual values of attributes belong to individual objects; methods
belong to the class.) E.g. the class of book copies, the class of
library users.

7



Object-oriented design

is the current mainstream way of doing modular design. Python is a more
or less OO language.

Key concepts:

I An object in your program represents some (complex) piece of data.
E.g. a particular copy of a book in the library.

I Objects have attributes – the simple data they contain. E.g. the title
of a book, or the library barcode number of a copy of a book.

I They also have methods – functions that do something to, or return
information from, the object. E.g. check out the book, or query its
current loan status.

I The class of an object defines its attributes and methods. (The
actual values of attributes belong to individual objects; methods
belong to the class.) E.g. the class of book copies, the class of
library users.

7



Object-oriented design

is the current mainstream way of doing modular design. Python is a more
or less OO language.

Key concepts:

I An object in your program represents some (complex) piece of data.
E.g. a particular copy of a book in the library.

I Objects have attributes – the simple data they contain. E.g. the title
of a book, or the library barcode number of a copy of a book.

I They also have methods – functions that do something to, or return
information from, the object. E.g. check out the book, or query its
current loan status.

I The class of an object defines its attributes and methods. (The
actual values of attributes belong to individual objects; methods
belong to the class.) E.g. the class of book copies, the class of
library users.

7



Object-oriented design

is the current mainstream way of doing modular design. Python is a more
or less OO language.

Key concepts:

I An object in your program represents some (complex) piece of data.
E.g. a particular copy of a book in the library.

I Objects have attributes – the simple data they contain. E.g. the title
of a book, or the library barcode number of a copy of a book.

I They also have methods – functions that do something to, or return
information from, the object. E.g. check out the book, or query its
current loan status.

I The class of an object defines its attributes and methods. (The
actual values of attributes belong to individual objects; methods
belong to the class.) E.g. the class of book copies, the class of
library users.

7



Inheritance

Key slogan for all programming: don’t write the same code twice!

OO design uses inheritance to let more specific classes ‘inherit’ methods
and attributes of more general classes.

E.g. a ‘book’ might inherit ‘publisher’ and ‘date’ from a more general
‘publication’ class; ‘magazines’ also inherit from ‘publications’.

8



Inheritance

Key slogan for all programming: don’t write the same code twice!

OO design uses inheritance to let more specific classes ‘inherit’ methods
and attributes of more general classes.

E.g. a ‘book’ might inherit ‘publisher’ and ‘date’ from a more general
‘publication’ class; ‘magazines’ also inherit from ‘publications’.

8



Inheritance

Key slogan for all programming: don’t write the same code twice!

OO design uses inheritance to let more specific classes ‘inherit’ methods
and attributes of more general classes.

E.g. a ‘book’ might inherit ‘publisher’ and ‘date’ from a more general
‘publication’ class; ‘magazines’ also inherit from ‘publications’.

8



Designing classes

A large system has lots of classes. How do you discuss and document
them?

There are often difficult decisions: when I ‘check out’ a book, does the
checkout method live with the book copy, or with me the user?

Many classes depend in various ways on other classes – how to document
that?

9



Designing classes

A large system has lots of classes. How do you discuss and document
them?

There are often difficult decisions: when I ‘check out’ a book, does the
checkout method live with the book copy, or with me the user?

Many classes depend in various ways on other classes – how to document
that?

9



Designing classes

A large system has lots of classes. How do you discuss and document
them?

There are often difficult decisions: when I ‘check out’ a book, does the
checkout method live with the book copy, or with me the user?

Many classes depend in various ways on other classes – how to document
that?

9



The Unified Modeling Language
UML is a graphical language for recording aspects of the requirements
and design of software systems.

It is a large language – specification is 800 pages.

In UML, you ‘draw’ diagrams of various types. A collection of diagrams
is a UML model. Some types of diagrams:

1. Entity–relationship diagram. The UML version of the standard
database diagram.

2. Use-case diagram. A way to describe how ‘actors’ (e.g. users)
interact with the system.

3. Class diagram. A way to describe object classes and their
relationships.

4. Interaction diagram. For detailed modelling of the control flow
between objects.

5. and ten other types!

Today: just class diagrams.

10



The Unified Modeling Language
UML is a graphical language for recording aspects of the requirements
and design of software systems.

It is a large language – specification is 800 pages.

In UML, you ‘draw’ diagrams of various types. A collection of diagrams
is a UML model. Some types of diagrams:

1. Entity–relationship diagram. The UML version of the standard
database diagram.

2. Use-case diagram. A way to describe how ‘actors’ (e.g. users)
interact with the system.

3. Class diagram. A way to describe object classes and their
relationships.

4. Interaction diagram. For detailed modelling of the control flow
between objects.

5. and ten other types!

Today: just class diagrams.

10



The Unified Modeling Language
UML is a graphical language for recording aspects of the requirements
and design of software systems.

It is a large language – specification is 800 pages.

In UML, you ‘draw’ diagrams of various types. A collection of diagrams
is a UML model. Some types of diagrams:

1. Entity–relationship diagram. The UML version of the standard
database diagram.

2. Use-case diagram. A way to describe how ‘actors’ (e.g. users)
interact with the system.

3. Class diagram. A way to describe object classes and their
relationships.

4. Interaction diagram. For detailed modelling of the control flow
between objects.

5. and ten other types!

Today: just class diagrams.

10



The Unified Modeling Language
UML is a graphical language for recording aspects of the requirements
and design of software systems.

It is a large language – specification is 800 pages.

In UML, you ‘draw’ diagrams of various types. A collection of diagrams
is a UML model. Some types of diagrams:

1. Entity–relationship diagram. The UML version of the standard
database diagram.

2. Use-case diagram. A way to describe how ‘actors’ (e.g. users)
interact with the system.

3. Class diagram. A way to describe object classes and their
relationships.

4. Interaction diagram. For detailed modelling of the control flow
between objects.

5. and ten other types!

Today: just class diagrams.

10



The Unified Modeling Language
UML is a graphical language for recording aspects of the requirements
and design of software systems.

It is a large language – specification is 800 pages.

In UML, you ‘draw’ diagrams of various types. A collection of diagrams
is a UML model. Some types of diagrams:

1. Entity–relationship diagram. The UML version of the standard
database diagram.

2. Use-case diagram. A way to describe how ‘actors’ (e.g. users)
interact with the system.

3. Class diagram. A way to describe object classes and their
relationships.

4. Interaction diagram. For detailed modelling of the control flow
between objects.

5. and ten other types!

Today: just class diagrams.

10



The Unified Modeling Language
UML is a graphical language for recording aspects of the requirements
and design of software systems.

It is a large language – specification is 800 pages.

In UML, you ‘draw’ diagrams of various types. A collection of diagrams
is a UML model. Some types of diagrams:

1. Entity–relationship diagram. The UML version of the standard
database diagram.

2. Use-case diagram. A way to describe how ‘actors’ (e.g. users)
interact with the system.

3. Class diagram. A way to describe object classes and their
relationships.

4. Interaction diagram. For detailed modelling of the control flow
between objects.

5. and ten other types!

Today: just class diagrams.

10



The Unified Modeling Language
UML is a graphical language for recording aspects of the requirements
and design of software systems.

It is a large language – specification is 800 pages.

In UML, you ‘draw’ diagrams of various types. A collection of diagrams
is a UML model. Some types of diagrams:

1. Entity–relationship diagram. The UML version of the standard
database diagram.

2. Use-case diagram. A way to describe how ‘actors’ (e.g. users)
interact with the system.

3. Class diagram. A way to describe object classes and their
relationships.

4. Interaction diagram. For detailed modelling of the control flow
between objects.

5. and ten other types!

Today: just class diagrams.

10



The Unified Modeling Language
UML is a graphical language for recording aspects of the requirements
and design of software systems.

It is a large language – specification is 800 pages.

In UML, you ‘draw’ diagrams of various types. A collection of diagrams
is a UML model. Some types of diagrams:

1. Entity–relationship diagram. The UML version of the standard
database diagram.

2. Use-case diagram. A way to describe how ‘actors’ (e.g. users)
interact with the system.

3. Class diagram. A way to describe object classes and their
relationships.

4. Interaction diagram. For detailed modelling of the control flow
between objects.

5. and ten other types!

Today: just class diagrams.

10



The Unified Modeling Language
UML is a graphical language for recording aspects of the requirements
and design of software systems.

It is a large language – specification is 800 pages.

In UML, you ‘draw’ diagrams of various types. A collection of diagrams
is a UML model. Some types of diagrams:

1. Entity–relationship diagram. The UML version of the standard
database diagram.

2. Use-case diagram. A way to describe how ‘actors’ (e.g. users)
interact with the system.

3. Class diagram. A way to describe object classes and their
relationships.

4. Interaction diagram. For detailed modelling of the control flow
between objects.

5. and ten other types!

Today: just class diagrams.
10



Classes

Book

title : String

author : PersonName

copies() : BookCopy List

copiesAvailable() : Int

I The name of the class

I its data attributes

I its methods

11



Classes

Book

title : String

author : PersonName

copies() : BookCopy List

copiesAvailable() : Int

I The name of the class

I its data attributes

I its methods

11



Classes

Book

title : String

author : PersonName

copies() : BookCopy List

copiesAvailable() : Int

I The name of the class

I its data attributes

I its methods

11



Associations
Solid lines denote ‘associations’ between classes:

Book

title : String

author : PersonName

copies() : BookCopy List

copiesAvailable() : Int

BookCopy

book : Book

barcode : Int

borrowed : bool

borrower : LibraryUser

lend(u : LibraryUser)

return()

Questions: what is the ‘borrower’ of an unborrowed copy? What might
be a better way to store loan status? (Depends on the programming
language.)

Note: association is actually a statement about a relation between
instances (objects), not between the classes themselves.

12



Associations
Solid lines denote ‘associations’ between classes:

0..*1

Book

title : String

author : PersonName

copies() : BookCopy List

copiesAvailable() : Int

BookCopy

book : Book

barcode : Int

borrowed : bool

borrower : LibraryUser

lend(u : LibraryUser)

return()

Questions: what is the ‘borrower’ of an unborrowed copy? What might
be a better way to store loan status? (Depends on the programming
language.)

Note: association is actually a statement about a relation between
instances (objects), not between the classes themselves.

12



Associations
Solid lines denote ‘associations’ between classes:

0..*1

Book

title : String

author : PersonName

copies() : BookCopy List

copiesAvailable() : Int

BookCopy

book : Book

barcode : Int

borrowed : bool

borrower : LibraryUser

lend(u : LibraryUser)

return()

Questions: what is the ‘borrower’ of an unborrowed copy? What might
be a better way to store loan status? (Depends on the programming
language.)

Note: association is actually a statement about a relation between
instances (objects), not between the classes themselves.

12



Associations
Solid lines denote ‘associations’ between classes:

0..*1

Book

title : String

author : PersonName

copies() : BookCopy List

copiesAvailable() : Int

BookCopy

book : Book

barcode : Int

borrowed : bool

borrower : LibraryUser

lend(u : LibraryUser)

return()

Questions: what is the ‘borrower’ of an unborrowed copy? What might
be a better way to store loan status? (Depends on the programming
language.)

Note: association is actually a statement about a relation between
instances (objects), not between the classes themselves.

12



Inheritance

Book

title : String

author : PersonName

copies() : BookCopy List

copiesAvailable() : Int

TextBook

subject : SubjectCode

yearLevel : Int

recommendedFor() : Course List

Inheritance is a relation between classes, not between instances (objects).

Actually, this type of arrow is called generalization, of which inheritance
is a particular case.

There are several other types of arrow in UML diagrams, and several other
ways to annotate them.

13



Inheritance

Book

title : String

author : PersonName

copies() : BookCopy List

copiesAvailable() : Int

TextBook

subject : SubjectCode

yearLevel : Int

recommendedFor() : Course List

Inheritance is a relation between classes, not between instances (objects).

Actually, this type of arrow is called generalization, of which inheritance
is a particular case.

There are several other types of arrow in UML diagrams, and several other
ways to annotate them.

13



Inheritance

Book

title : String

author : PersonName

copies() : BookCopy List

copiesAvailable() : Int

TextBook

subject : SubjectCode

yearLevel : Int

recommendedFor() : Course List

Inheritance is a relation between classes, not between instances (objects).

Actually, this type of arrow is called generalization, of which inheritance
is a particular case.

There are several other types of arrow in UML diagrams, and several other
ways to annotate them.

13



Inheritance

Book

title : String

author : PersonName

copies() : BookCopy List

copiesAvailable() : Int

TextBook

subject : SubjectCode

yearLevel : Int

recommendedFor() : Course List

Inheritance is a relation between classes, not between instances (objects).

Actually, this type of arrow is called generalization, of which inheritance
is a particular case.

There are several other types of arrow in UML diagrams, and several other
ways to annotate them.

13



Interlude – designing and drawing some diagrams

Please work in pairs for this exercise.

Point your browser at

http://www.umletino.com/

and start playing with . . .

14

http://www.umletino.com/


Classes for a PoS-tagger

You are designing a fast and simple text processing system for Croatian.
One of its components will be a Part-of-Speech tagger. The input to the
tagger is a sentence, already split into words. The tagger annotates each
word with its part of speech, plus associated information (e.g. case for
nouns, tense for verbs).

You’re writing it in Python, Java, or some other object-oriented language.

Take 10–15 minutes to think about some of the classes that might
be useful to write your code – then draw them in UMLetino with any
appropriate association/inheritance lines.

Now one member of each pair move to the next group, and try to criticize
(positively or negatively!) their design.

15



Classes for a PoS-tagger

You are designing a fast and simple text processing system for Croatian.
One of its components will be a Part-of-Speech tagger. The input to the
tagger is a sentence, already split into words. The tagger annotates each
word with its part of speech, plus associated information (e.g. case for
nouns, tense for verbs).

You’re writing it in Python, Java, or some other object-oriented language.

Take 10–15 minutes to think about some of the classes that might
be useful to write your code – then draw them in UMLetino with any
appropriate association/inheritance lines.

Now one member of each pair move to the next group, and try to criticize
(positively or negatively!) their design.

15



Classes for a PoS-tagger

You are designing a fast and simple text processing system for Croatian.
One of its components will be a Part-of-Speech tagger. The input to the
tagger is a sentence, already split into words. The tagger annotates each
word with its part of speech, plus associated information (e.g. case for
nouns, tense for verbs).

You’re writing it in Python, Java, or some other object-oriented language.

Take 10–15 minutes to think about some of the classes that might
be useful to write your code – then draw them in UMLetino with any
appropriate association/inheritance lines.

Now one member of each pair move to the next group, and try to criticize
(positively or negatively!) their design.

15



Classes for a PoS-tagger

You are designing a fast and simple text processing system for Croatian.
One of its components will be a Part-of-Speech tagger. The input to the
tagger is a sentence, already split into words. The tagger annotates each
word with its part of speech, plus associated information (e.g. case for
nouns, tense for verbs).

You’re writing it in Python, Java, or some other object-oriented language.

Take 10–15 minutes to think about some of the classes that might
be useful to write your code – then draw them in UMLetino with any
appropriate association/inheritance lines.

Now one member of each pair move to the next group, and try to criticize
(positively or negatively!) their design.

15



Text analysis for UML

Designing new code is hard – understanding old code is harder!

To help understand ‘legacy code’, there is a desire to generate UML
diagrams from existing code.

Or even from existing informal specifications . . .

16



UML from code

Is this a hard problem? Easy problem?

public class Book {

string title;

PersonName author;

List<BookCopy> copies () {

// code to interrogate database...

}

}

Could you write some Python to turn Java into UML class diagrams?

Could you draw it?

17



UML from code

Is this a hard problem? Easy problem?

public class Book {

string title;

PersonName author;

List<BookCopy> copies () {

// code to interrogate database...

}

}

Could you write some Python to turn Java into UML class diagrams?

Could you draw it?

17



Example tool for UML from code

Extracting UML from code is not really hard, but is a lot of work to do
nicely.

A popular commercial tool is UML Lab from Yatta Solutions. Here’s what
it can do:

https://www.uml-lab.com/en/uml-lab/videos/reverse-egnineering/

I don’t know an open-source equivalent – Doxygen can produce inheritance
diagrams that are UML-like, but not UML.

18

https://www.uml-lab.com/en/uml-lab/videos/reverse-egnineering/


Example tool for UML from code

Extracting UML from code is not really hard, but is a lot of work to do
nicely.

A popular commercial tool is UML Lab from Yatta Solutions. Here’s what
it can do:

https://www.uml-lab.com/en/uml-lab/videos/reverse-egnineering/

I don’t know an open-source equivalent – Doxygen can produce inheritance
diagrams that are UML-like, but not UML.

18

https://www.uml-lab.com/en/uml-lab/videos/reverse-egnineering/


Example tool for UML from code

Extracting UML from code is not really hard, but is a lot of work to do
nicely.

A popular commercial tool is UML Lab from Yatta Solutions. Here’s what
it can do:

https://www.uml-lab.com/en/uml-lab/videos/reverse-egnineering/

I don’t know an open-source equivalent – Doxygen can produce inheritance
diagrams that are UML-like, but not UML.

18

https://www.uml-lab.com/en/uml-lab/videos/reverse-egnineering/


UML from English

Textual analysis for software design goes back at least to Russell Abbott in
1983 (‘Program design by informal English Descriptions’, CACM 26(11)
882–894).

That paper is a manual, quite detailed, and somewhat English-specific
procedure for generating code outlines from text specifications. But the
ideas are quite general.

19



Parts of Speech and Programming Languages

Basic idea:

I Nouns indicate entities, objects, classes

I Verbs indicate procedures, methods, functions

20



Parts of Speech and Programming Languages

Basic idea:

I Nouns indicate entities, objects, classes

I Verbs indicate procedures, methods, functions

20



Identifying objects and classes

Look for noun phrases in the system description.

Then abandon things which are:

I redundant

I outside scope

I vague

I attributes

I operations and events

Similarly, can use verb phrases to identify operations and/or associations.

21



Identifying objects and classes

Look for noun phrases in the system description.

Then abandon things which are:

I redundant

I outside scope

I vague

I attributes

I operations and events

Similarly, can use verb phrases to identify operations and/or associations.

21



Identifying objects and classes

Look for noun phrases in the system description.

Then abandon things which are:

I redundant

I outside scope

I vague

I attributes

I operations and events

Similarly, can use verb phrases to identify operations and/or associations.

21



Identifying classes example

The library contains books and journals. It may have several copies of a
given book. Some of the books are for short term loans only. All other
books may be borrowed by any library member for three weeks. Members
of the library can normally borrow up to six items at a time, but members
of staff may borrow up to 12 items at one time. Only members of staff
may borrow journals.

I Eliminate?: library?, short term loan?, member of the library?,
week?, time?

I Left with: book, journal, copy (of book), library member, member
of staff.

And verbs for operations?

22



Identifying classes example

The library contains books and journals. It may have several copies of a
given book. Some of the books are for short term loans only. All other
books may be borrowed by any library member for three weeks. Members
of the library can normally borrow up to six items at a time, but members
of staff may borrow up to 12 items at one time. Only members of staff
may borrow journals.

I Eliminate?: library?, short term loan?, member of the library?,
week?, time?

I Left with: book, journal, copy (of book), library member, member
of staff.

And verbs for operations?

22



Identifying classes example

The library contains books and journals. It may have several copies of a
given book. Some of the books are for short term loans only. All other
books may be borrowed by any library member for three weeks. Members
of the library can normally borrow up to six items at a time, but members
of staff may borrow up to 12 items at one time. Only members of staff
may borrow journals.

I Eliminate?: library?, short term loan?, member of the library?,
week?, time?

I Left with: book, journal, copy (of book), library member, member
of staff.

And verbs for operations?

22



Identifying classes example

The library contains books and journals. It may have several copies of a
given book. Some of the books are for short term loans only. All other
books may be borrowed by any library member for three weeks. Members
of the library can normally borrow up to six items at a time, but members
of staff may borrow up to 12 items at one time. Only members of staff
may borrow journals.

I Eliminate?: library?, short term loan?, member of the library?,
week?, time?

I Left with: book, journal, copy (of book), library member, member
of staff.

And verbs for operations?

22



Identifying classes example

The library contains books and journals. It may have several copies of a
given book. Some of the books are for short term loans only. All other
books may be borrowed by any library member for three weeks. Members
of the library can normally borrow up to six items at a time, but members
of staff may borrow up to 12 items at one time. Only members of staff
may borrow journals.

I Eliminate?: library?, short term loan?, member of the library?,
week?, time?

I Left with: book, journal, copy (of book), library member, member
of staff.

And verbs for operations?

22



Identifying classes example

The library contains books and journals. It may have several copies of a
given book. Some of the books are for short term loans only. All other
books may be borrowed by any library member for three weeks. Members
of the library can normally borrow up to six items at a time, but members
of staff may borrow up to 12 items at one time. Only members of staff
may borrow journals.

I Eliminate?: library?, short term loan?, member of the library?,
week?, time?

I Left with: book, journal, copy (of book), library member, member
of staff.

And verbs for operations?

22



Identifying classes example

The library contains books and journals. It may have several copies of a
given book. Some of the books are for short term loans only. All other
books may be borrowed by any library member for three weeks. Members
of the library can normally borrow up to six items at a time, but members
of staff may borrow up to 12 items at one time. Only members of staff
may borrow journals.

I Eliminate?: library?, short term loan?, member of the library?,
week?, time?

I Left with: book, journal, copy (of book), library member, member
of staff.

And verbs for operations?

22



Identifying classes example

The library contains books and journals. It may have several copies of a
given book. Some of the books are for short term loans only. All other
books may be borrowed by any library member for three weeks. Members
of the library can normally borrow up to six items at a time, but members
of staff may borrow up to 12 items at one time. Only members of staff
may borrow journals.

I Eliminate?: library?, short term loan?, member of the library?,
week?, time?

I Left with: book, journal, copy (of book), library member, member
of staff.

And verbs for operations?

22



Identifying classes example

The library contains books and journals. It may have several copies of a
given book. Some of the books are for short term loans only. All other
books may be borrowed by any library member for three weeks. Members
of the library can normally borrow up to six items at a time, but members
of staff may borrow up to 12 items at one time. Only members of staff
may borrow journals.

I Eliminate?: library?, short term loan?, member of the library?,
week?, time?

I Left with: book, journal, copy (of book), library member, member
of staff.

And verbs for operations?

22



Identifying classes example

The library contains books and journals. It may have several copies of a
given book. Some of the books are for short term loans only. All other
books may be borrowed by any library member for three weeks. Members
of the library can normally borrow up to six items at a time, but members
of staff may borrow up to 12 items at one time. Only members of staff
may borrow journals.

I Eliminate?: library?, short term loan?, member of the library?,
week?, time?

I Left with: book, journal, copy (of book), library member, member
of staff.

And verbs for operations?

22



Identifying classes example

The library contains books and journals. It may have several copies of a
given book. Some of the books are for short term loans only. All other
books may be borrowed by any library member for three weeks. Members
of the library can normally borrow up to six items at a time, but members
of staff may borrow up to 12 items at one time. Only members of staff
may borrow journals.

I Eliminate?: library?, short term loan?, member of the library?,
week?, time?

I Left with: book, journal, copy (of book), library member, member
of staff.

And verbs for operations?

22



Identifying classes example

The library contains books and journals. It may have several copies of a
given book. Some of the books are for short term loans only. All other
books may be borrowed by any library member for three weeks. Members
of the library can normally borrow up to six items at a time, but members
of staff may borrow up to 12 items at one time. Only members of staff
may borrow journals.

I Eliminate?: library?, short term loan?, member of the library?,
week?, time?

I Left with: book, journal, copy (of book), library member, member
of staff.

And verbs for operations?

22



Identifying classes example

The library contains books and journals. It may have several copies of a
given book. Some of the books are for short term loans only. All other
books may be borrowed by any library member for three weeks. Members
of the library can normally borrow up to six items at a time, but members
of staff may borrow up to 12 items at one time. Only members of staff
may borrow journals.

I Eliminate?: library?, short term loan?, member of the library?,
week?, time?

I Left with: book, journal, copy (of book), library member, member
of staff.

And verbs for operations?

22



Automating?

The example contains non-trivial linguistics and domain knowledge:

I common nouns (book, journal) appear in singular and plural, with
quantifiers and numerals;

I books and journals are items, but this is implicit;

I ‘for short term loans’ identifies an attibute? sub-class? of books;

I are ‘members of staff’ different from ‘members of the library’, or a
sub-class of them?

23



Automating?

The example contains non-trivial linguistics and domain knowledge:

I common nouns (book, journal) appear in singular and plural, with
quantifiers and numerals;

I books and journals are items, but this is implicit;

I ‘for short term loans’ identifies an attibute? sub-class? of books;

I are ‘members of staff’ different from ‘members of the library’, or a
sub-class of them?

23



Automating?

The example contains non-trivial linguistics and domain knowledge:

I common nouns (book, journal) appear in singular and plural, with
quantifiers and numerals;

I books and journals are items, but this is implicit;

I ‘for short term loans’ identifies an attibute? sub-class? of books;

I are ‘members of staff’ different from ‘members of the library’, or a
sub-class of them?

23



Automating?

The example contains non-trivial linguistics and domain knowledge:

I common nouns (book, journal) appear in singular and plural, with
quantifiers and numerals;

I books and journals are items, but this is implicit;

I ‘for short term loans’ identifies an attibute? sub-class? of books;

I are ‘members of staff’ different from ‘members of the library’, or a
sub-class of them?

23



Automating?

The example contains non-trivial linguistics and domain knowledge:

I common nouns (book, journal) appear in singular and plural, with
quantifiers and numerals;

I books and journals are items, but this is implicit;

I ‘for short term loans’ identifies an attibute? sub-class? of books;

I are ‘members of staff’ different from ‘members of the library’, or a
sub-class of them?

23



Recent work in extracting UML from text

The problem is hard, and is current research.

I’ll now outline one recent contribution – if you’re interested, its references
and citations will lead to others.

Mohd Ibrahim; Rodina Ahmad
Class Diagram Extraction from Textual Requirements Using Natural
Language Processing (NLP) Techniques
2010 Second International Conference on Computer Research and
Development
DOI: 10.1109/ICCRD.2010.71

They call their system ‘RACE’ (Requirement Analysis and Class diagram
Extraction).

24



Text processing

The input text is processed using open-source tools and some custom
algorithms:

I tokenize

I identify and remove stop words, with guidance from morphology
analyser

I use OpenNLP for PoS tagging, chunking and syntax parsing

I Use the WordNet semantic database and a custom ontology to
identify words expressing ‘concepts’

Result is a list of ‘concept words’ and their PoS tags, e.g. ‘library(N),
contains(V), book(N)’.

25



Text processing

The input text is processed using open-source tools and some custom
algorithms:

I tokenize

I identify and remove stop words, with guidance from morphology
analyser

I use OpenNLP for PoS tagging, chunking and syntax parsing

I Use the WordNet semantic database and a custom ontology to
identify words expressing ‘concepts’

Result is a list of ‘concept words’ and their PoS tags, e.g. ‘library(N),
contains(V), book(N)’.

25



Text processing

The input text is processed using open-source tools and some custom
algorithms:

I tokenize

I identify and remove stop words, with guidance from morphology
analyser

I use OpenNLP for PoS tagging, chunking and syntax parsing

I Use the WordNet semantic database and a custom ontology to
identify words expressing ‘concepts’

Result is a list of ‘concept words’ and their PoS tags, e.g. ‘library(N),
contains(V), book(N)’.

25



Text processing

The input text is processed using open-source tools and some custom
algorithms:

I tokenize

I identify and remove stop words, with guidance from morphology
analyser

I use OpenNLP for PoS tagging, chunking and syntax parsing

I Use the WordNet semantic database and a custom ontology to
identify words expressing ‘concepts’

Result is a list of ‘concept words’ and their PoS tags, e.g. ‘library(N),
contains(V), book(N)’.

25



Text processing

The input text is processed using open-source tools and some custom
algorithms:

I tokenize

I identify and remove stop words, with guidance from morphology
analyser

I use OpenNLP for PoS tagging, chunking and syntax parsing

I Use the WordNet semantic database and a custom ontology to
identify words expressing ‘concepts’

Result is a list of ‘concept words’ and their PoS tags, e.g. ‘library(N),
contains(V), book(N)’.

25



Text processing

The input text is processed using open-source tools and some custom
algorithms:

I tokenize

I identify and remove stop words, with guidance from morphology
analyser

I use OpenNLP for PoS tagging, chunking and syntax parsing

I Use the WordNet semantic database and a custom ontology to
identify words expressing ‘concepts’

Result is a list of ‘concept words’ and their PoS tags, e.g. ‘library(N),
contains(V), book(N)’.

25



Class identification

I use syntactic information to identify classes, operations and
attributes as we did ‘by hand’ above.

I identify associations by syntactic information (e.g. ‘book author’
indicates ‘book’ is associated to ‘author’)/

I during this phase, try to identify attribute works, and use them to
inform the next pass.

26



Class identification

I use syntactic information to identify classes, operations and
attributes as we did ‘by hand’ above.

I identify associations by syntactic information (e.g. ‘book author’
indicates ‘book’ is associated to ‘author’)/

I during this phase, try to identify attribute works, and use them to
inform the next pass.

26



Class identification

I use syntactic information to identify classes, operations and
attributes as we did ‘by hand’ above.

I identify associations by syntactic information (e.g. ‘book author’
indicates ‘book’ is associated to ‘author’)/

I during this phase, try to identify attribute works, and use them to
inform the next pass.

26



Diagram

I The gathered information is encoded into class diagrams, and drawn
using simple layout.

I The user can then adjust the layout.

27



Diagram

I The gathered information is encoded into class diagrams, and drawn
using simple layout.

I The user can then adjust the layout.

27



Postscript: a useful warning

When I first looked for some recent work on extraction of class diagrams
from English, I found:

S.D. Joshi and Dhanraj Deshpande
‘Textual Requirement Analysis for UML Diagram Extraction by using
NLP’
Int. J. Computer Applications 50(8) 42–46 (July 2012).

However, that article – badly written in poor English – is obviously
plagiarized in its entirety from the article I have talked about.

The ‘International Journal of Computer Applications’ is what is known
as a ‘predatory journal’ – it provides a way for failing academics (mostly,
alas, in Asia) to publish any old crap in an ‘open-access’ ‘journal’. There
are also many predatory conferences.

Be aware of this: distrust any journal or conference with a very broad
topic. You can google for a list of suspected predatory journals.

28



Postscript: a useful warning

When I first looked for some recent work on extraction of class diagrams
from English, I found:

S.D. Joshi and Dhanraj Deshpande
‘Textual Requirement Analysis for UML Diagram Extraction by using
NLP’
Int. J. Computer Applications 50(8) 42–46 (July 2012).

However, that article – badly written in poor English – is obviously
plagiarized in its entirety from the article I have talked about.

The ‘International Journal of Computer Applications’ is what is known
as a ‘predatory journal’ – it provides a way for failing academics (mostly,
alas, in Asia) to publish any old crap in an ‘open-access’ ‘journal’. There
are also many predatory conferences.

Be aware of this: distrust any journal or conference with a very broad
topic. You can google for a list of suspected predatory journals.

28



Postscript: a useful warning

When I first looked for some recent work on extraction of class diagrams
from English, I found:

S.D. Joshi and Dhanraj Deshpande
‘Textual Requirement Analysis for UML Diagram Extraction by using
NLP’
Int. J. Computer Applications 50(8) 42–46 (July 2012).

However, that article – badly written in poor English – is obviously
plagiarized in its entirety from the article I have talked about.

The ‘International Journal of Computer Applications’ is what is known
as a ‘predatory journal’ – it provides a way for failing academics (mostly,
alas, in Asia) to publish any old crap in an ‘open-access’ ‘journal’. There
are also many predatory conferences.

Be aware of this: distrust any journal or conference with a very broad
topic. You can google for a list of suspected predatory journals.

28



Postscript: a useful warning

When I first looked for some recent work on extraction of class diagrams
from English, I found:

S.D. Joshi and Dhanraj Deshpande
‘Textual Requirement Analysis for UML Diagram Extraction by using
NLP’
Int. J. Computer Applications 50(8) 42–46 (July 2012).

However, that article – badly written in poor English – is obviously
plagiarized in its entirety from the article I have talked about.

The ‘International Journal of Computer Applications’ is what is known
as a ‘predatory journal’ – it provides a way for failing academics (mostly,
alas, in Asia) to publish any old crap in an ‘open-access’ ‘journal’. There
are also many predatory conferences.

Be aware of this: distrust any journal or conference with a very broad
topic. You can google for a list of suspected predatory journals.

28


