
To infinity – and beyond!

Julian Bradfield

LFCS, ICCS

Infinity and eternity

for ever and ever (idiom)

immer und ewig (idiom)

for ever and a day (Shakespeare)

nunc et semper et in saecula saeculorum (from Gk, probably from
Aramaic idiom)

The King said, “The third question is, how many seconds of time
are there in eternity.” Then said the shepherd boy, “In Lower
Pomerania is the Diamond Mountain, which is a league high, a
league wide, and a league in depth; every hundred years a little
bird comes and sharpens its beak on it, and when the whole
mountain is worn away by this, then the first second of eternity will
be over.” (from Grimm)

Towards infinity

Mathematicians and other children often play the following game:
We take turns naming numbers, and see who can name the largest
one. This is a game in the psychological rather than the formal
sense, since I might always just add one to your number, but my
goal is to try to completely demolish your ego by transcending your
number via some completely new principle.

Kenneth Kunen

Georg Cantor

‘The father of set theory’

1845–1918

Martin-Luther-Universität
Halle-Wittenberg

1874: the birth of set
theory, and the discovery
of different levels of
infinity

1883: the theory of ordinal
numbers

Ordinals and Cardinals

Language:

I cardinal numerals
I one, two, . . .
I “how many?”

I ordinal numerals
I first, second, . . .
I “where in a sequence?”

Mathematics:

I cardinal numbers
I 0, 1, 2, . . .
I “how many [in a set]?”

I ordinal numbers
I 0, 1, 2, . . .
I “where in a sequence?”, also “how long [is a sequence]?”

The sequence a,b,a is 3 letters long, but contains 2 distinct letters.

Counting

0:
1:
2:
10:

Obviously we can keep counting ‘for ever’:

ω: •••

and why not then count some more?

ω + 1: •••

Write ω for the length of the infinite sequence.

To help visualization, compress the infinite sequence to



Addition of ordinals

Adding sequences is just putting one after the other:

ω + 1:

ω + 3:

ω + ω:

But 1 + ω: = ω

Multiplication of ordinals

Integer multiplication is just repeated addition: 2× 3 = 2 + 2 + 2.

By convention, let’s write x · y to mean y copies of x added
together.

2 · 3:

ω · 3:

2 · ω: ••• = = ω

ω · ω: •••
which we might visualize as

Well-foundedness and induction

Key property of these ordinals: they are well-founded. Start with
an infinite ordinal, and keep decreasing it: after a finite (but
arbitrarily large) number of steps, you must hit zero.

This means that ordinals can generalize proof by induction:

If

I P(α) holds for α = 0, and

I if P(β) holds for all β < α, then P(α) holds,

then we can conclude that P(α) holds for all ordinals α.

(Often restricted to ordinals less than some fixed α0.)

Example: why does Ackermann terminate?

The Ackermann function (of two integer arguments) A(x , y) is
defined recursively thus:

A(0, y) = y + 1

A(x , 0) = A(x − 1, 1) for x > 0

A(x , y) = A(x − 1,A(x , y − 1)) for x , y > 0

Is it obvious that this recursive computation ever finishes on, e.g.,
A(4, 4)?

In each recursive call, either x gets smaller, or x stays the same
and y gets smaller.

This is an induction on ω · ω.

The Ackermann function grows quite fast – see later . . .

Ordinal Exponentiation

Integer exponentiation is just repeated multiplication:
23 = 2× 2× 2.

I.e., we write xy for y copies of x multiplied together.

ω2: ω · ω
2ω: 2 · 2 · 2 · . . . = ω

ω3: ω · ω · ω = ω2 · ω

ωω: ω · ω · ω · . . .

A little puzzle . . .

A number is written in hereditary base b if it’s a sum of powers of
b, with all the exponents also written in hereditary base b. E.g.
with b = 2

1030 = 210 + 22 + 2 = 222+1+2 + 22 + 2

or with b = 3

1030 = 33×2 + 33+2 + 33 × 2 + 3 + 1

Think of a number n. Write it in h.b. 2. Now replace 2 by 3 and
evaluate. Subtract 1. Write the result in h.b. 3. Replace 3 by 4
and evaluate. Subtract 1. And so on . . . until you hit zero.

Let G (n) be the length of this process – if it finishes!



For example: G (3)

3 =2 2 + 1
→ 3 + 1 =3 4

4− 1 = 3 =3 3
→ 4 =4 4

4− 1 = 3 =4 3
→ 3 =5 3

3− 1 = 2 =5 2
→ 2 =6 2

2− 1 = 1 =6 1
→ 1 =7 1

1− 1 = 0

So G (3) = 6

G (4) =

68950808030926201657363899596115099569577498758029736589
65164942362743495979724871888253075446277672715412687741
34196294274754024623945165423420847416977379911463833552
69129320073235045130731133415321473276443100557449932505
15006661770697335697266822986380629230539311939473732984
32189645058087369473177341975229512418408401173732994662
36583517126642762404390343968364036246706786021125426974
22457548590135058038973996050222167215602290558339854433
64582849621578912386681708820717886170299010486094304298
31938313300623537993032219144244347215613123094143176938
67571586750377935644459245645595556087522305546773436198
47032332425407785083961078958596196387897297104581844575
77157677751206967346327625413465613506947655384380307508
65233130216216163628621847422406626611936799943353915562
43559138950800725078317787807770746695975268954544726471
50035241859874391011058882911482099143475541850986185545

We now skip 135278 slides . . .

30187441025940056292813034386280177679544034517464936619
31073504178981468557969472279965424657699404235005937914
72930883993663027161466688743717253581936410274739801296
83060714286243899305063868650864112105238061406944808189
08304913462509086531545100380965533413343423478836091833
53220182680722735478679352859535040769913825815484931187
10726329608316620305483302616305150324000876272357296528
10182401729583610978448023254665651115973448118179302336
79234929512268465106495927833854484067484182464486747555
62975216019453924341023727286959093404563639409013246678
20328593203290715635768149137536972887886088038810819894
08291784060416318863529224353808259669206267357619658951
446422310193135419323844928197722374143

Or, more comprehensibly, about 7× 10121210694; or about 2229
.

G (5) =

10
10·
··
10

}
10

10·
··
10

}
10

10·
··
10

}
10101021

or to put it in binary,

2
2·
··
2
}

2
2·
··
2
}

2
2·
··
2
}

22226

Why does G always terminate?

A slight variation of the description:

Think of a number n. Write it in h.b. 2, and replace 2 by ω; let
b = 2. Increment b, and subtract 1, expanding ω to b (only) when
necessary; repeat until zero.

4 = ωω b = 2
→ 26 = ωω − 1 b = 3

= ω3 − 1 b = 3
= ω2 · 2 + ω · 2 + 2 b = 3

→ 41 = ω2 · 2 + ω · 2 + 1 b = 4
→ 60 = ω2 · 2 + ω · 2 b = 5
→ 83 = ω2 · 2 + ω + 5 b = 6

The ordinal always decreases, even while its evaluation with ω = b
is increasing. This is ordinal induction.



Fast-growing functions . . .

G (n) grows fast. So also does Ackermann A(x , y):
y

x 0 1 2 3 4

0 1 2 3 4 5

1 2 3 4 5 6

2 3 5 7 9 11

3 5 13 29 61 125

4 13 65533 ∼ 265533 ∼ 2265533 ∼ 22265533

Let A(n) mean A(n, n). It looks as if A(n) > G (n):

n A(n) G (n)

0 1 1

1 3 2

2 7 5

3 61 6

4 22265533

2229

. . . via iterating exponentiation . . .

Multiplication 2 · n is iterated addition 2 + 2 + 2 + · · ·+ 2.

Exponentiation 2n or 2̂ n is iterated multiplication
2× 2× 2× · · · × 2.

Tetration n2 or 2̂ n̂ is iterated exponentiation 2̂ 2̂ 2̂ . . . 2̂.

and so on . . .

Call a number small if it’s . . . small . . .

. . . and 1-big if it’s 2̂ (small) . . .

. . . and 2-big if it’s 2̂ (̂small) . . . and so on.

Let’s continue the Ackermann – Goodstein comparison:

n A(n) G (n)

4 2-big 2-big

5 3-big 3-big

6 4-big 5-big

7 5-big 7-big

8 6-big G (4)-big

. . . and so ad infinitum

Call a number 1-huge if it’s (1-big)-big, 2-huge if it’s (1-huge)-big,
etc.

Call a number 1-humungous if it’s (1-huge)-huge, etc.

etc. etc. etc. etc. till your brain explodes.

. . . and so ultra infinitum

Play the iterated exponentiation game with ordinals, and don’t
stop at infinity!

ω,ωω, ωωω
, . . .

After this we need a new symbol ε0 = ωωω··
·

– note that ωε0 = ε0,
just as ωω = ω · ωω and ω · ω = ω + ω · ω.

ε0 is the first fixed point of the function α 7→ ωα.

Then ε1 is the second fixed point (and is the end of
ε0 + 1, ωε0+1, ωωε0+1

, . . .).

Then there’s εεε···
, the first fixed point of α 7→ εα.

Then start counting fixed points of the functions that list the fixed
points: the Veblen hierarchy. The end of this process is called Γ0.

Then it starts getting complicated . . .

Why do (some) computer scientists care?

The working theoretical computer scientist needs ordinals to do
inductions. However, generally speaking, up to ωω is as far as we
need to go.

Proof theorists (logicians, but sometimes found in CS depts!) need
much bigger ordinals.

The strength of a theory (how much that is true, can it prove?)
can be measured by how long are the inductions it can do.

E.g. Primitive Recursive Arithmetic can’t do ωω inductions.

Peano Arithmetic can’t do ε0 induction – so can’t prove that G
terminates!

Proof Theory may be of interest to Theorem Provers . . .

Envoi

All these ordinals are small!

The real Cantorian revolution was about cardinals – we have not
gone beyond the first infinite cardinal.

But that’s for another talk.


