Fixpoints and Games

Julian Bradfield

Laboratory for Foundations of Computer Science
University of Edinburgh

Inductive definitions

Suppose Φ is an operator taking sets $W \subseteq \omega$ to sets $\Phi(W)$. If Φ is monotone, then

$$
\varnothing \subseteq \Phi(\varnothing) \subseteq \Phi(\Phi(\varnothing)) \subseteq \ldots \text { transfinitely }
$$

The limit is the set inductively defined by Φ.
Put $\Phi^{\zeta}=\Phi\left(\bigcup_{\xi<\zeta} \Phi^{\xi}\right)$; then $\Phi^{\infty}=\bigcup_{\zeta} \phi^{\zeta}$ is the limit.
If ϕ is definable as $W \mapsto\{w \mid \phi(W, w)\}$
for a Γ formula $\phi(W, w)$ with a free set variable W, then write $\phi^{\infty}(w)$ for $w \in \phi^{\infty}$.
If ϕ also has free variable x, and $w_{0} \in \omega$, can define

$$
R(x) \Leftrightarrow \phi^{\infty}\left(x, w_{0}\right)
$$

Such an R is said to be Γ-IND.
If ϕ is positive, then R is pos-Г-IND.
Kleene showed that

$$
\text { pos- } \Pi_{1}^{0}-I N D=\Pi_{1}^{1}
$$

The fixpoint hierarchy

Take first-order arithmetic and add set variables X, membership \in, and an operator to form inductive definitions:

$$
\mu(w, W) \cdot \phi(w, W)
$$

denotes the set inductively defined by ϕ (must be positive).
Define $\Sigma_{0}^{\mu}=\Sigma_{1}^{0} ; \Pi_{n}^{\mu}=\neg \Sigma_{n}^{\mu}$; and $P(x)$ to be \sum_{n+1}^{μ} if there is $\Pi_{n}^{\mu} Q(w, W, x)$ such that $P(x) \Leftrightarrow \tau \in \mu(w, W) . Q(w, W, x)$.
Note that $\Sigma_{1}^{\mu}=p o s-\Pi_{1}^{0}-I N D=\Pi_{1}^{1}$.
The fixpoint hierarchy is strict by 'the usual argument'.

. . . came from Computer Science

In modal logic, don't need individual variables: [] Φ means $s \in[] \Phi$ where s is the 'current state'.
So the fixpoint extension of modal logic looks like $\mu Z . \Phi(Z)$, with Z a variable over sets of states.
The fixpoint hierarchy in modal fixpoint logic (alias modal mu-calculus) $\mu Z_{1} . \nu Z_{2} . \mu Z_{3} \ldots$ is important for several reasons and was early understood to be intimately connected with Rabin automata and parity games.

Automata and modal mu-calculus

A Rabin automaton is a finite automaton equipped with m pairs (R_{i}, G_{i}) of subsets of states.
An infinite run is accepted if there some i such that R_{i} is seen finitely often and G_{i} is seen infinitely often: or, so to say,

$$
\bigvee_{1 \leq i \leq m}\left(\neg \infty R_{i} \wedge \infty G_{i}\right)
$$

Rabin automata correspond to certain fixpoint languages; m corresponds to alternation depth.
In an alternating Rabin automaton, we play a Gale-Stewart style game on the automaton, with the above winning condition.

They are equivalent to alternating parity automata. Here we have sets $X_{1}, X_{2}, X_{3}, X_{4}, \ldots, X_{2 m}$; the winning condition is: the highest X_{i} seen infinitely often must be even.
These are equivalent to modal mu-calculus: $2 m$ corresponds to fixpoint alternation.
Now, the parity condition says:

$$
\begin{aligned}
\infty X_{2 m} \vee & \left(\neg \infty X _ { 2 m - 1 } \wedge \left(\infty X_{2 m-2}\right.\right. \\
& \left.\left.\vee \ldots \wedge\left(\infty X_{2} \vee \neg \infty X_{1}\right) \ldots\right)\right)
\end{aligned}
$$

Parity and Rabin conditions are boolean combinations of ∞ and $\neg \infty$.

The game quantifier; determinacy

Let $P(\alpha, x)$ define a family of games; define

$$
\supset \alpha \cdot P(\alpha, x) \Leftrightarrow x \in\{x \mid \text { Eloise wins } P(\alpha, x)\}
$$

(so loosely $\supset=\exists \forall \exists \forall \ldots$)
If P is Γ then $\supset \alpha . P$ is $\supset \Gamma$.
Martin's theorem says $\operatorname{Det}\left(\Delta_{1}^{1}\right)$: if P is Δ_{1}^{1} then the game P is determined.
If Γ is a known class, what do we know about $\supset \Gamma$? In general: if $\operatorname{Det}(\Gamma)$ (and ...) then $\neg \supset \Gamma=\supset \neg \Gamma$.
For analytical Γ we have $\supset \Pi_{n}^{1}=\Sigma_{n+1}^{1}$; and assuming $\operatorname{Det}\left(\Sigma_{n}^{1}\right)$ also $\supset \Sigma_{n}^{1}=\Pi_{n+1}^{1}$.

Games and induction

Kechris \& Moschovakis showed that

$$
\supset \Sigma_{1}^{0}=\Pi_{1}^{1}
$$

Solovay showed

$$
D \Sigma_{2}^{0}=\operatorname{pos}-\Sigma_{1}^{1}-I N D
$$

Now $\Sigma_{1}^{1}=\neg \Pi_{1}^{1}=\neg \Sigma_{1}^{\mu}$. So putting it another way:

$$
\begin{aligned}
& \supset \Sigma_{1}^{0}=\Sigma_{1}^{\mu} \\
& \supset \Sigma_{2}^{0}=\Sigma_{2}^{\mu}
\end{aligned}
$$

The computer science version suggests how to continue ...

Playing games with arithmetic fixpoints

Take an arithmetic fixpoint formula of the form

$$
\mu X_{2 m-1} \cdot \nu X_{2 m-2} \ldots \nu X_{2} \cdot \mu X_{1} \cdot \phi
$$

We can define a game P on ω such that Eloise wins iff the formula is true.
How? It is exactly an 'interpreter': build interpreter machine, with states coded as integers. For correctness, need exactly that the plays satisfy a parity condition: highest X_{i} seen infinitely often is even. (Why? By transferring via modal mu-calculus; or directly.) Therefore any fixpoint property Q is $\supset \alpha . P$ for some parity condition P.
What is a parity condition? ' ∞X_{i} in α ' says that $\forall j . \exists k>j .{ }^{\prime} X_{i}$ seen at $\alpha(k)$ '. So it is Π_{2}^{0}; so parity is ∇_{2}^{0} (boolean closure of Σ_{2}^{0}).

From fixpoints via parity to difference hierarchies

So we have $\Sigma_{n}^{\mu} \subseteq 9 \nabla_{2}^{0}$ for all n.
Can we refine this?
The difference hierarchy over Σ_{2}^{0} is defined by

$$
\Sigma_{1}^{\partial}=\Sigma_{2}^{0} \quad \Sigma_{n+1}^{\partial}=\Sigma_{2}^{0} \wedge \Pi_{n}^{\partial}
$$

We may as well define $\Sigma_{0}^{\partial}=\Sigma_{1}^{0}$. Then Kechris-Moschovakis and Solovay give us

$$
\Sigma_{1}^{\mu}=\rho \Sigma_{0}^{\partial} \quad \Sigma_{2}^{\mu}=\rho \Sigma_{1}^{\partial}
$$

Is this the right formulation for the generalization?
By inspection the parity condition of rank m is Σ_{m}^{∂}.
By more careful inspection it is actually Σ_{m-1}^{2}.
(Why? Because rank 1 is 'finitely often X_{1} ', which can only be true if play terminates: $\exists j$.' play stops at $\alpha(j)^{\prime}$ which is only Σ_{1}^{0}.)

From differences to fixpoints

So we now have

$$
\Sigma_{n}^{\mu} \subseteq 9 \Sigma_{n-1}^{\partial}
$$

The converse is harder. The idea is to extend Solovay, which analysed Wolfe's proof of $\operatorname{Det}\left(\Sigma_{2}^{0}\right)$.
Suppose $P(a) \Leftrightarrow(\exists i . Q(i, \alpha)) \wedge R(\alpha)$ is Σ_{n+1}^{∂}, so Q is Π_{1}^{0} and R is Π_{n}^{∂}.
We define inductively 'easy winning positions' $u=a_{0} \ldots a_{k}$ for Eloise by $W^{\zeta}=\left\{u \mid \exists i\right.$.'Eloise wins H_{i}^{ζ} from $\left.u^{\prime}\right\}$, where H_{i}^{ζ} is defined in terms of $R, W^{<\zeta}$ and Q. It can be shown that Eloise wins from u iff $u \in W^{\infty}$. Then W is an inductive definition with a (by induction) Π_{n+1}^{μ} body, so is \sum_{n+2}^{μ}, Q.E.D.
So we have the theorem

$$
\Sigma_{n+1}^{\mu}=9 \Sigma_{n}^{\partial} .
$$

Onwards and Upwards ...

It is 'well-known' that $\Delta_{3}^{0}=\bigcup_{\zeta<\omega_{1}^{\mathrm{cK}}} \Sigma_{\zeta}^{\partial}$ (and similarly for higher Δ_{n}^{0}), for the transfinite difference hierarchy.
So is it the case that

$$
\Sigma_{\zeta+1}^{\mu}=9 \Sigma_{\zeta}^{\partial} ?
$$

(For $\zeta<\omega_{1}^{\mathrm{CK}}$ and appropriate transfinite extension of fixpoint hierarchy.)
Yes ... though now fixpoint satisfaction no longer corresponds to general transfinite parity games, but rather to certain well-behaved transfinite parity games.
(Joint work with Jacques Duparc and Sandra Quickert)

Another way of understanding what happens as we climb the difference hierarchy.
The effective Wadge degrees of Σ_{n}^{∂} are $\left(\omega_{1}^{\mathrm{CK}}\right)^{n}$ (and we hope this continues transfinitely).
There is an operation on Wadge games which has the effect of increasing the degree by a multiplicative factor of ω_{1}^{CK}.
This operation is roughly: allow one player to cancel the game and start again, perhaps switching to the complement of 'his' domain. He's allowed to do this a finite number of times.
In a loose sense, this corresponds at the strategy computation level to wrapping an inductive definition around your existing strategy. Question: what does the game quantifier do to Wadge degrees?
(Joint work with Jacques Duparc and Sandra Quickert)

