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Inductive definitions

Suppose � is an operator taking sets W ⊆ ! to sets �(W ). If � is
monotone, then

∅ ⊆ �(∅) ⊆ �(�(∅)) ⊆ : : : transfinitely

The limit is the set inductively defined by �.

Put �� = �(
⋃
�<� �

�); then �∞ =
⋃
� �

� is the limit.

If � is definable as W 7→ {w | �(W ;w) }
for a � formula �(W ;w) with a free set variable W , then write
�∞(w) for w ∈ �∞.

If � also has free variable x , and w0 ∈ !, can define

R(x) ⇔ �∞(x ;w0)

Such an R is said to be � -IND.
If � is positive, then R is pos-� -IND.

Kleene showed that
pos-Π0

1-IND = Π1
1



The fixpoint hierarchy

Take first-order arithmetic and add set variables X , membership ∈,
and an operator to form inductive definitions:

�(w ;W ):�(w ;W )

denotes the set inductively defined by � (must be positive).

Define Σ�
0 = Σ0

1; Π�
n = ¬Σ�

n ;
and P(x) to be Σ�

n+1 if there is Π�
n Q(w ;W ; x) such that

P(x) ⇔ � ∈ �(w ;W ):Q(w ;W ; x).

Note that Σ�
1 = pos-Π0

1-IND = Π1
1.

The fixpoint hierarchy is strict by ‘the usual argument’.



. . . came from Computer Science

In modal logic, don’t need individual variables: []� means s ∈ []�
where s is the ‘current state’.

So the fixpoint extension of modal logic looks like �Z :�(Z ), with
Z a variable over sets of states.

The fixpoint hierarchy in modal fixpoint logic (alias modal
mu-calculus) �Z1:�Z2:�Z3 : : : is important for several reasons –
and was early understood to be intimately connected with Rabin
automata and parity games.



Automata and modal mu-calculus

A Rabin automaton is a finite automaton equipped with m pairs
(Ri ;Gi ) of subsets of states.

An infinite run is accepted if there some i such that Ri is seen
finitely often and Gi is seen infinitely often: or, so to say,∨

1≤i≤m

(¬∞Ri ∧∞Gi )

Rabin automata correspond to certain fixpoint languages; m
corresponds to alternation depth.

In an alternating Rabin automaton, we play a Gale–Stewart style
game on the automaton, with the above winning condition.



They are equivalent to alternating parity automata. Here we have
sets X1;X2;X3;X4; : : : ;X2m; the winning condition is: the highest
Xi seen infinitely often must be even.

These are equivalent to modal mu-calculus: 2m corresponds to
fixpoint alternation.

Now, the parity condition says:

∞X2m ∨ (¬∞X2m−1 ∧ (∞X2m−2

∨ : : : ∧ (∞X2 ∨ ¬∞X1) : : :))

Parity and Rabin conditions are boolean combinations of ∞ and
¬∞.



The game quantifier; determinacy

Let P(�; x) define a family of games; define

G�:P(�; x) ⇔ x ∈ { x | Eloise wins P(�; x) }

(so loosely G = ∃∀∃∀ : : :)
If P is � then G�:P is G� .

Martin’s theorem says Det(∆1
1): if P is ∆1

1 then the game P is
determined.

If � is a known class, what do we know about G� ?

In general: if Det(�) (and . . . ) then ¬G� = G¬� .

For analytical � we have GΠ1
n = Σ1

n+1; and assuming Det(Σ1
n) also

GΣ1
n = Π1

n+1.



Games and induction

Kechris & Moschovakis showed that

GΣ0
1 = Π1

1

Solovay showed
GΣ0

2 = pos-Σ1
1-IND

Now Σ1
1 = ¬Π1

1 = ¬Σ�
1 . So putting it another way:

GΣ0
1 = Σ�

1

GΣ0
2 = Σ�

2

The computer science version suggests how to continue . . .



Playing games with arithmetic fixpoints

Take an arithmetic fixpoint formula of the form

�X2m−1:�X2m−2: : : : �X2:�X1:�

We can define a game P on ! such that Eloise wins iff the formula
is true.

How? It is exactly an ‘interpreter’: build interpreter machine, with
states coded as integers. For correctness, need exactly that the
plays satisfy a parity condition: highest Xi seen infinitely often is
even. (Why? By transferring via modal mu-calculus; or directly.)

Therefore any fixpoint property Q is G�:P for some parity
condition P.

What is a parity condition? ‘∞Xi in �’ says that
∀j :∃k > j :‘Xi seen at �(k)’.
So it is Π0

2; so parity is ∇0
2 (boolean closure of Σ0

2).



From fixpoints via parity to difference hierarchies

So we have Σ�
n ⊆ G∇0

2 for all n.
Can we refine this?

The difference hierarchy over Σ0
2 is defined by

Σ@
1 = Σ0

2 Σ@
n+1 = Σ0

2 ∧ Π@
n

We may as well define Σ@
0 = Σ0

1. Then Kechris–Moschovakis and
Solovay give us

Σ�
1 = GΣ@

0 Σ�
2 = GΣ@

1

Is this the right formulation for the generalization?

By inspection the parity condition of rank m is Σ@
m.

By more careful inspection it is actually Σ@
m−1.

(Why? Because rank 1 is ‘finitely often X1’, which can only be
true if play terminates: ∃j :‘play stops at �(j)’ which is only Σ0

1.)



From differences to fixpoints

So we now have
Σ�

n ⊆ GΣ@
n−1

The converse is harder. The idea is to extend Solovay, which
analysed Wolfe’s proof of Det(Σ0

2).

Suppose P(a) ⇔ (∃i :Q(i ; �)) ∧ R(�) is Σ@
n+1,

so Q is Π0
1 and R is Π@

n .

We define inductively ‘easy winning positions’ u = a0 : : : ak for
Eloise by
W � = { u | ∃i :‘Eloise wins H�

i from u’ },
where H�

i is defined in terms of R, W<� and Q.

It can be shown that Eloise wins from u iff u ∈ W∞. Then W is
an inductive definition with a (by induction) Π�

n+1 body, so is
Σ�

n+2, Q.E.D.

So we have the theorem

Σ�
n+1 = GΣ@

n :



Onwards and Upwards . . .

It is ‘well-known’ that ∆0
3 =

⋃
�<!CK

1
Σ@
� (and similarly for higher

∆0
n), for the transfinite difference hierarchy.

So is it the case that
Σ�
�+1 = GΣ@

�?

(For � < !CK
1 and appropriate transfinite extension of fixpoint

hierarchy.)

Yes . . . though now fixpoint satisfaction no longer corresponds to
general transfinite parity games, but rather to certain well-behaved
transfinite parity games.

(Joint work with Jacques Duparc and Sandra Quickert)



. . . with WWW

Another way of understanding what happens as we climb the
difference hierarchy.

The effective Wadge degrees of Σ@
n are (!CK

1 )n (and we hope this
continues transfinitely).

There is an operation on Wadge games which has the effect of
increasing the degree by a multiplicative factor of !CK

1 .

This operation is roughly: allow one player to cancel the game and
start again, perhaps switching to the complement of ‘his’ domain.
He’s allowed to do this a finite number of times.

In a loose sense, this corresponds at the strategy computation level
to wrapping an inductive definition around your existing strategy.

Question: what does the game quantifier do to Wadge degrees?

(Joint work with Jacques Duparc and Sandra Quickert)


