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Inductive definitions

Suppose @ is an operator taking sets W C w to sets @(W). If @ is
monotone, then

I C (@) CO(P(2)) C ... transfinitely
The limit is the set inductively defined by ®.
Put @¢ = &(| e ®°); then & = [, ¢ is the limit.

If @ is definable as W — {w | ¢(W, w) }
for a I formula ¢(W, w) with a free set variable W, then write
¢>°(w) for w € @,
If ¢ also has free variable x, and wy € w, can define
R(x) < ¢°°(x, wo)
Such an R is said to be -IND.
If ¢ is positive, then R is pos-I-IND.

Kleene showed that
pos-NY-IND = 1}



The fixpoint hierarchy

Take first-order arithmetic and add set variables X, membership €,
and an operator to form inductive definitions:

p(w, W).¢(w, W)

denotes the set inductively defined by ¢ (must be positive).
Define ¥ = Y9, N = —xh;

and P(x) to be ¥}, if there is [}, Q(w, W, x) such that
P(x) < 1 € pu(w, W).Q(w, W, x).

Note that ¥} = pos-M9-IND = 1.

The fixpoint hierarchy is strict by ‘the usual argument’.



.came from Computer Science

In modal logic, don't need individual variables: [|® means s € [|®
where s is the ‘current state’'.

So the fixpoint extension of modal logic looks like pZ.®(Z), with
Z a variable over sets of states.

The fixpoint hierarchy in modal fixpoint logic (alias modal
mu-calculus) pZy.wZp.uZs . .. is important for several reasons —

and was early understood to be intimately connected with Rabin
automata and parity games.



Automata and modal mu-calculus

A Rabin automaton is a finite automaton equipped with m pairs
(Ri, G;j) of subsets of states.

An infinite run is accepted if there some i such that R; is seen
finitely often and G; is seen infinitely often: or, so to say,

\/ (—ooR; A 0 G;)

1<i<m

Rabin automata correspond to certain fixpoint languages; m
corresponds to alternation depth.

In an alternating Rabin automaton, we play a Gale-Stewart style
game on the automaton, with the above winning condition.



They are equivalent to alternating parity automata. Here we have
sets X1, Xo, X3, X4, ..., Xom; the winning condition is: the highest
X; seen infinitely often must be even.

These are equivalent to modal mu-calculus: 2m corresponds to
fixpoint alternation.

Now, the parity condition says:

00 Xom V (m00Xom—1 A (00 Xom—2
V.o A (00Xo VmooXi) .. L)

Parity and Rabin conditions are boolean combinations of co and
—0Q.



The game quantifier; determinacy

Let P(«, x) define a family of games; define
Ya.P(a, x) < x € { x | Eloise wins P(a, x) }

(so loosely O = 3v3v. . .)
If Pis [ then Da.Pis OF.

Martin's theorem says Det(A1}): if P is A] then the game P is
determined.

If [ is a known class, what do we know about O/ 7?
In general: if Det(I) (and ...) then =9/ =9—/".

For analytical I we have O} =% ;; and assuming Det(X}.) also
Oyl =nk,;.



Games and induction
Kechris & Moschovakis showed that
Ox) =M

Solovay showed
9% = pos-¥}-IND
Now ¥} = [} = —¥. So putting it another way:

oy = ¥
oy = 3k

The computer science version suggests how to continue ...



Playing games with arithmetic fixpoints

Take an arithmetic fixpoint formula of the form
UXom—1.0Xom—2....vXo.uX1.¢

We can define a game P on w such that Eloise wins iff the formula
is true.

How? It is exactly an ‘interpreter’: build interpreter machine, with
states coded as integers. For correctness, need exactly that the
plays satisfy a parity condition: highest X; seen infinitely often is
even. (Why? By transferring via modal mu-calculus; or directly.)
Therefore any fixpoint property Q is Da.P for some parity
condition P.

What is a parity condition? ‘coX; in o' says that

Vj.3k > j.'X; seen at a(k)'.

So it is M9; so parity is V9 (boolean closure of ¥9).



From fixpoints via parity to difference hierarchies

So we have ¥, C OV for all n.
Can we refine this?

The difference hierarchy over ¥9 is defined by
¥9=33 x2.,=3xIAN¢

We may as well define ¥§ = 7. Then Kechris—Moschovakis and
Solovay give us
W =9%8 ¥4 =977

Is this the right formulation for the generalization?

By inspection the parity condition of rank mis ¥ .
By more careful inspection it is actually Z‘,?qfl.

(Why? Because rank 1 is ‘finitely often Xi', which can only be
true if play terminates: 3j.'play stops at a(j)’ which is only 39.)



From differences to fixpoints

So we now have
ThCox)
The converse is harder. The idea is to extend Solovay, which
analysed Wolfe's proof of Det(X9).
Suppose P(a) < (3i.Q(i,@)) A R(a) is 9, ,,
so @is M9 and R is NS.
We define inductively ‘easy winning positions’ u = ag ... a, for
Eloise by
W¢ = { u | Ji.'Eloise wins H,.c from u' },
where H,-C is defined in terms of R, W<¢ and Q.

It can be shown that Eloise wins from v iff u € W. Then W is
an inductive definition with a (by induction) I}, body, so is
Z’,;H, Q.E.D.

So we have the theorem

0
s, =050



Onwards and Upwards . ..

It is ‘well-known’ that A9 = UC<0JCK 32 (and similarly for higher
AY), for the transfinite difference h|erarchy.

So is it the case that
09
C+1 = DZ

(For ¢ < wf and appropriate transfinite extension of fixpoint
hierarchy.)

Yes ... though now fixpoint satisfaction no longer corresponds to
general transfinite parity games, but rather to certain well-behaved
transfinite parity games.

(Joint work with Jacques Duparc and Sandra Quickert)



. with WWW

Another way of understanding what happens as we climb the
difference hierarchy.

The effective Wadge degrees of ¥ are (w{*)" (and we hope this
continues transfinitely).

There is an operation on Wadge games which has the effect of
increasing the degree by a multiplicative factor of wf®.

This operation is roughly: allow one player to cancel the game and
start again, perhaps switching to the complement of ‘his’ domain.
He's allowed to do this a finite number of times.

In a loose sense, this corresponds at the strategy computation level
to wrapping an inductive definition around your existing strategy.

Question: what does the game quantifier do to Wadge degrees?

(Joint work with Jacques Duparc and Sandra Quickert)



