Fixpoints and Games

Julian Bradfield

Laboratory for Foundations of Computer Science University of Edinburgh

Inductive definitions

Suppose Φ is an operator taking sets $W \subseteq \omega$ to sets $\Phi(W)$. If Φ is monotone, then

$$arnothing \subseteq \Phi(arnothing) \subseteq \Phi(\Phi(arnothing)) \subseteq \ldots$$
 transfinitely

The limit is the set inductively defined by Φ . Put $\Phi^{\zeta} = \Phi(\bigcup_{\xi < \zeta} \Phi^{\xi})$; then $\Phi^{\infty} = \bigcup_{\zeta} \Phi^{\zeta}$ is the limit. If Φ is definable as $W \mapsto \{ w \mid \phi(W, w) \}$ for a Γ formula $\phi(W, w)$ with a free set variable W, then write $\phi^{\infty}(w)$ for $w \in \Phi^{\infty}$.

If ϕ also has free variable x, and $w_0 \in \omega$, can define

$$R(x) \Leftrightarrow \phi^{\infty}(x, w_0)$$

Such an R is said to be Γ -IND. If ϕ is *positive*, then R is *pos*- Γ -IND. Kleene showed that

 $pos-\Pi_1^0$ - $IND = \Pi_1^1$

The fixpoint hierarchy

Take *first-order* arithmetic and add set variables X, membership \in , and an operator to form inductive definitions:

$\mu(w, W).\phi(w, W)$

denotes the set inductively defined by ϕ (must be positive). Define $\Sigma_0^{\mu} = \Sigma_1^0$; $\Pi_n^{\mu} = \neg \Sigma_n^{\mu}$; and P(x) to be Σ_{n+1}^{μ} if there is $\Pi_n^{\mu} Q(w, W, x)$ such that $P(x) \Leftrightarrow \tau \in \mu(w, W) Q(w, W, x)$. Note that $\Sigma_1^{\mu} = pos - \Pi_1^0 - IND = \Pi_1^1$.

The fixpoint hierarchy is strict by 'the usual argument'.

... came from Computer Science

In modal logic, don't need individual variables: $[]\phi$ means $s \in []\phi$ where s is the 'current state'.

So the fixpoint extension of modal logic looks like $\mu Z \Phi(Z)$, with Z a variable over sets of states.

The fixpoint hierarchy in modal fixpoint logic (alias modal mu-calculus) $\mu Z_1 \cdot \nu Z_2 \cdot \mu Z_3 \dots$ is important for several reasons – and was early understood to be intimately connected with *Rabin automata* and *parity games*.

Automata and modal mu-calculus

A *Rabin automaton* is a finite automaton equipped with *m* pairs (R_i, G_i) of subsets of states.

An infinite run is *accepted* if there some *i* such that R_i is seen finitely often and G_i is seen infinitely often: or, so to say,

$$\bigvee_{1\leq i\leq m} (\neg \infty R_i \wedge \infty G_i)$$

Rabin automata correspond to certain fixpoint languages; m corresponds to alternation depth.

In an *alternating* Rabin automaton, we play a Gale–Stewart style game on the automaton, with the above winning condition.

They are equivalent to *alternating parity automata*. Here we have sets $X_1, X_2, X_3, X_4, \ldots, X_{2m}$; the winning condition is: the highest X_i seen infinitely often must be even.

These are equivalent to modal mu-calculus: 2m corresponds to fixpoint alternation.

Now, the parity condition says:

$$\infty X_{2m} \vee (\neg \infty X_{2m-1} \land (\infty X_{2m-2} \\ \vee \ldots \land (\infty X_2 \lor \neg \infty X_1) \ldots))$$

Parity and Rabin conditions are boolean combinations of ∞ and $\neg\infty.$

The game quantifier; determinacy

Let $P(\alpha, x)$ define a family of games; define

 $\Im \alpha . P(\alpha, x) \Leftrightarrow x \in \{x \mid \text{Eloise wins } P(\alpha, x)\}$

(so loosely $\mathbb{S} = \exists \forall \exists \forall \dots$) If *P* is Γ then $\mathbb{S}\alpha . P$ is $\mathbb{S}\Gamma$.

Martin's theorem says $Det(\Delta_1^1)$: if *P* is Δ_1^1 then the game *P* is determined.

If Γ is a known class, what do we know about $\Im\Gamma$? In general: if $Det(\Gamma)$ (and ...) then $\neg \Im\Gamma = \Im \neg \Gamma$. For analytical Γ we have $\Im\Pi_n^1 = \Sigma_{n+1}^1$; and assuming $Det(\Sigma_n^1)$ also $\Im\Sigma_n^1 = \Pi_{n+1}^1$.

Games and induction

Kechris & Moschovakis showed that

 $\Im \Sigma_1^0 = \Pi_1^1$

Solovay showed

$$\Im \Sigma_2^0 = pos - \Sigma_1^1 - IND$$

Now $\Sigma_1^1 = \neg \Pi_1^1 = \neg \Sigma_1^{\mu}$. So putting it another way:

$$\begin{array}{rcl} \Sigma\Sigma_1^0 &=& \Sigma_1^\mu\\ \Sigma\Sigma_2^0 &=& \Sigma_2^\mu \end{array}$$

The computer science version suggests how to continue

Playing games with arithmetic fixpoints

Take an arithmetic fixpoint formula of the form

 $\mu X_{2m-1} \cdot \nu X_{2m-2} \cdots \nu X_2 \cdot \mu X_1 \cdot \phi$

We can define a game P on ω such that Eloise wins iff the formula is true.

How? It is exactly an 'interpreter': build interpreter machine, with states coded as integers. For correctness, need exactly that the plays satisfy a parity condition: highest X_i seen infinitely often is even. (Why? By transferring via modal mu-calculus; or directly.) Therefore *any* fixpoint property Q is $\Im \alpha . P$ for some parity condition P.

What is a parity condition? ' ∞X_i in α ' says that $\forall j. \exists k > j. X_i$ seen at $\alpha(k)$ '. So it is Π_2^0 ; so parity is ∇_2^0 (boolean closure of Σ_2^0). From fixpoints via parity to difference hierarchies

So we have $\Sigma_n^{\mu} \subseteq \Im \nabla_2^0$ for all *n*. Can we refine this?

The difference hierarchy over Σ_2^0 is defined by

 $\Sigma_1^\partial = \Sigma_2^0 \qquad \Sigma_{n+1}^\partial = \Sigma_2^0 \wedge \Pi_n^\partial$

We may as well define $\Sigma_0^\partial = \Sigma_1^0.$ Then Kechris–Moschovakis and Solovay give us

 $\Sigma_1^{\mu} = \Im \Sigma_0^{\partial} \qquad \Sigma_2^{\mu} = \Im \Sigma_1^{\partial}$

Is this the right formulation for the generalization? By inspection the parity condition of rank *m* is \sum_{m}^{∂} . By more careful inspection it is actually $\sum_{m=1}^{\partial}$. (Why? Because rank 1 is 'finitely often X_1 ', which can only be true if play terminates: $\exists j$ 'play stops at $\alpha(j)$ ' which is only \sum_{1}^{0} .)

From differences to fixpoints

So we now have

 $\Sigma_n^{\mu} \subseteq \Im \Sigma_{n-1}^{\partial}$

The converse is harder. The idea is to extend Solovay, which analysed Wolfe's proof of $Det(\Sigma_2^0)$. Suppose $P(a) \Leftrightarrow (\exists i. Q(i, \alpha)) \land R(\alpha)$ is Σ_{n+1}^{∂} , so Q is Π_1^0 and R is Π_n^{∂} .

We define inductively 'easy winning positions' $u = a_0 \dots a_k$ for Eloise by

 $W^{\zeta} = \{ u \mid \exists i \text{ 'Eloise wins } H_i^{\zeta} \text{ from } u' \},$

where H_i^{ζ} is defined in terms of *R*, $W^{<\zeta}$ and *Q*.

It can be shown that Eloise wins from u iff $u \in W^{\infty}$. Then W is an inductive definition with a (by induction) \prod_{n+1}^{μ} body, so is \sum_{n+2}^{μ} , Q.E.D.

So we have the theorem

$$\Sigma_{n+1}^{\mu} = \Im \Sigma_n^{\partial}.$$

Onwards and Upwards ...

It is 'well-known' that $\Delta_3^0 = \bigcup_{\zeta < \omega_1^{CK}} \Sigma_{\zeta}^{\partial}$ (and similarly for higher Δ_n^0), for the transfinite difference hierarchy. So is it the case that

 $\Sigma^{\mu}_{\zeta+1} = \Im \Sigma^{\partial}_{\zeta}?$

(For $\zeta < \omega_1^{\rm CK}$ and appropriate transfinite extension of fixpoint hierarchy.)

Yes ... though now fixpoint satisfaction no longer corresponds to general transfinite parity games, but rather to certain well-behaved transfinite parity games.

(Joint work with Jacques Duparc and Sandra Quickert)

... with WWW

Another way of understanding what happens as we climb the difference hierarchy.

The effective Wadge degrees of $\sum_{n=1}^{n} 2^{CK} (\omega_1^{CK})^n$ (and we hope this continues transfinitely).

There is an operation on Wadge games which has the effect of increasing the degree by a multiplicative factor of $\omega_1^{\rm CK}.$

This operation is roughly: allow one player to cancel the game and start again, perhaps switching to the complement of 'his' domain. He's allowed to do this a finite number of times.

In a loose sense, this corresponds at the strategy computation level to wrapping an inductive definition around your existing strategy. Question: what does the game quantifier do to Wadge degrees?

(Joint work with Jacques Duparc and Sandra Quickert)