	Inductive definitions	The fixpoint hierarchy
Fixpoints and Games	Suppose ϕ is an operator taking sets $W \subseteq \omega$ to sets $\phi(W)$. If ϕ is monotone, then	Take <i>first-order</i> arithmetic and add set variables X, membership e and an operator to form inductive definitions:
Julian Bradfield	$arnothing \subseteq \pmb{\phi}(arnothing) \subseteq \pmb{\phi}(\pmb{\phi}(arnothing)) \subseteq \dots$ transfinitely	$\mu(w, W).\phi(w, W)$
	The limit is the set <i>inductively defined by</i> Φ . Put $\Phi^{\zeta} = \Phi(\bigcup_{\xi < \zeta} \Phi^{\xi})$; then $\Phi^{\infty} = \bigcup_{\zeta} \Phi^{\zeta}$ is the limit.	denotes the set inductively defined by ϕ (must be positive). Define $\Sigma_0^{\mu} = \Sigma_1^{0}$; $\Pi_n^{\mu} = \neg \Sigma_n^{\mu}$; and $P(x)$ to be Σ_{n+1}^{μ} if there is $\Pi_n^{\mu} Q(w, W, x)$ such that $P(x) \Leftrightarrow \tau \in \mu(w, W).Q(w, W, x).$ Note that $\Sigma_1^{\mu} = pos \cdot \Pi_1^{0} \cdot IND = \Pi_1^{1}.$ The fixpoint hierarchy is strict by 'the usual argument'.
Laboratory for Foundations of Computer Science University of Edinburgh	If ϕ is definable as $W \mapsto \{ w \mid \phi(W, w) \}$ for a Γ formula $\phi(W, w)$ with a free set variable W , then write $\phi^{\infty}(w)$ for $w \in \phi^{\infty}$. If ϕ also has free variable x , and $w_0 \in \omega$, can define	
	$R(x) \Leftrightarrow \phi^{\infty}(x, w_0)$	
	Such an <i>R</i> is said to be Γ - <i>IND</i> . If ϕ is <i>positive</i> , then <i>R</i> is <i>pos</i> - Γ - <i>IND</i> . Kleene showed that pos - Π_1^0 - <i>IND</i> = Π_1^1	

... came from Computer Science

In modal logic, don't need individual variables: $[] \phi$ means $s \in [] \phi$ where s is the 'current state'.

So the fixpoint extension of modal logic looks like $\mu Z \Phi(Z)$, with Z a variable over sets of states.

The fixpoint hierarchy in modal fixpoint logic (alias modal mu-calculus) $\mu Z_1.\nu Z_2.\mu Z_3...$ is important for several reasons – and was early understood to be intimately connected with *Rabin automata* and *parity games*.

Automata and modal mu-calculus

A *Rabin automaton* is a finite automaton equipped with *m* pairs (R_{i}, G_{i}) of subsets of states.

An infinite run is *accepted* if there some *i* such that R_i is seen finitely often and G_i is seen infinitely often: or, so to say,

$$\bigvee_{1\leq i\leq m} (\neg \infty R_i \wedge \infty G_i)$$

Rabin automata correspond to certain fixpoint languages; m corresponds to alternation depth.

In an *alternating* Rabin automaton, we play a Gale–Stewart style game on the automaton, with the above winning condition.

They are equivalent to *alternating parity automata*. Here we have sets $X_1, X_2, X_3, X_4, \ldots, X_{2m}$; the winning condition is: the highest X_i seen infinitely often must be even.

These are equivalent to modal mu-calculus: 2m corresponds to fixpoint alternation.

Now, the parity condition says:

$$\infty X_{2m} \vee (\neg \infty X_{2m-1} \land (\infty X_{2m-2} \\ \lor \ldots \land (\infty X_2 \lor \neg \infty X_1) \ldots))$$

Parity and Rabin conditions are boolean combinations of ∞ and $\neg\infty.$

The game quantifier; determinacy Let $P(\alpha x)$ define a family of games: define $\Im \alpha . P(\alpha, x) \Leftrightarrow x \in \{x \mid \text{Eloise wins } P(\alpha, x)\}$ (so loosely $\mathbb{S} = \exists \forall \exists \forall \dots$) If P is Γ then $\Im \alpha P$ is $\Im \Gamma$ Martin's theorem says $Det(\Delta_1^1)$: if P is Δ_1^1 then the game P is determined. If Γ is a known class, what do we know about $\Im \Gamma$? In general: if $Det(\Gamma)$ (and ...) then $\neg \Im \Gamma = \Im \neg \Gamma$. For analytical Γ we have $\Im \prod_{n=1}^{1} \Sigma_{n+1}^{1}$; and assuming $Det(\Sigma_{n}^{1})$ also $\Im \Sigma_n^1 = \Pi_{n+1}^1.$

Games and induction

Kechris & Moschovakis showed that

 $\Im \Sigma_{1}^{0} = \Pi_{1}^{1}$

Solovav showed

$$\Im \Sigma_2^0 = pos - \Sigma_1^1 - IND$$

Now $\Sigma_1^1 = \neg \Pi_1^1 = \neg \Sigma_1^{\mu}$. So putting it another way:

 $\begin{array}{rcl} \Im \Sigma_1^0 &=& \Sigma_1^\mu \\ \Im \Sigma_2^0 &=& \Sigma_2^\mu \end{array}$

The computer science version suggests how to continue

Playing games with arithmetic fixpoints

Take an arithmetic fixpoint formula of the form

$\mu X_{2m-1}, \nu X_{2m-2}, \dots, \nu X_2, \mu X_1, \phi$

We can define a game P on ω such that Eloise wins iff the formula is true

How? It is exactly an 'interpreter': build interpreter machine, with states coded as integers. For correctness, need exactly that the plays satisfy a parity condition: highest X_i seen infinitely often is even. (Why? By transferring via modal mu-calculus: or directly.) Therefore any fixpoint property Q is $\Im \alpha P$ for some parity condition P What is a parity condition? ' ∞X_i in α ' says that $\forall j \exists k > j `X_i \text{ seen at } \alpha(k)'.$

 $\Sigma^{\mu}_{\ell+1} = \Im \Sigma^{\partial}_{\ell}?$

So it is Π_2^0 ; so parity is ∇_2^0 (boolean closure of Σ_2^0).

From fixpoints via parity to difference hierarchies From differences to fixpoints Onwards and Upwards ... It is 'well-known' that $\Delta_3^0 = \bigcup_{\zeta < \omega_{\tau}^{CK}} \Sigma_{\zeta}^{\partial}$ (and similarly for higher So we have $\sum_{n=1}^{\mu} \subseteq \Im \nabla_{2}^{0}$ for all *n*. So we now have $\Sigma_n^{\mu} \subset \Im \Sigma_{n-1}^{\partial}$ Can we refine this? Δ_{a}^{0}), for the transfinite difference hierarchy. The difference hierarchy over Σ_{2}^{0} is defined by So is it the case that The converse is harder. The idea is to extend Solovay, which analysed Wolfe's proof of $Det(\Sigma_2^0)$. $\Sigma_1^{\partial} = \Sigma_2^0$ $\Sigma_{n+1}^{\partial} = \Sigma_2^0 \wedge \Pi_n^{\partial}$ Suppose $P(a) \Leftrightarrow (\exists i \ Q(i, \alpha)) \land R(\alpha)$ is $\sum_{n=1}^{\partial}$ (For $\zeta < \omega_1^{CK}$ and appropriate transfinite extension of fixpoint so Q is Π^0_1 and R is Π^{∂}_2 . We may as well define $\Sigma_0^\partial = \Sigma_1^0$. Then Kechris–Moschovakis and hierarchy.) We define inductively 'easy winning positions' $u = a_0$ a_k for Solovay give us Yes ... though now fixpoint satisfaction no longer corresponds to $\Sigma_1^{\mu} = \Im \Sigma_0^{\partial} \qquad \Sigma_2^{\mu} = \Im \Sigma_1^{\partial}$ Eloise by general transfinite parity games, but rather to certain well-behaved $W^{\zeta} = \{ u \mid \exists i \text{ 'Eloise wins } H_i^{\zeta} \text{ from } u' \},\$ transfinite parity games. Is this the right formulation for the generalization? where H_i^{ζ} is defined in terms of *R*, $W^{<\zeta}$ and *Q*. By inspection the parity condition of rank m is $\sum_{m=1}^{n}$ It can be shown that Eloise wins from u iff $u \in W^{\infty}$. Then W is By more careful inspection it is actually $\sum_{m=1}^{\partial}$. an inductive definition with a (by induction) $\prod_{n=1}^{\mu}$ body, so is (Why? Because rank 1 is 'finitely often X_1 ', which can only be $\Sigma_{n\pm 2}^{\mu}$, Q.E.D. (Joint work with Jacques Duparc and Sandra Quickert) true if play terminates: $\exists j$ 'play stops at $\alpha(j)$ ' which is only Σ_1^0 .) So we have the theorem $\Sigma_{n+1}^{\mu} = \Im \Sigma_{n}^{\partial}$

... with WWW

Another way of understanding what happens as we climb the difference hierarchy.

The effective Wadge degrees of \sum_{n}^{∂} are $(\omega_{1}^{CK})^{n}$ (and we hope this continues transfinitely).

There is an operation on Wadge games which has the effect of increasing the degree by a multiplicative factor of $\omega_1^{\rm CK}$.

This operation is roughly: allow one player to cancel the game and start again, perhaps switching to the complement of 'his' domain. He's allowed to do this a finite number of times.

In a loose sense, this corresponds at the strategy computation level to wrapping an inductive definition around your existing strategy. Question: what does the game quantifier do to Wadge degrees?

(Joint work with Jacques Duparc and Sandra Quickert)