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Inductive definitions

Suppose @ is an operator taking sets W C w to sets @(W). If @ is
monotone, then

& C O(D) C d(P(2)) C ... transfinitely
The limit is the set inductively defined by &.
Put @¢ = &({J, @%); then &> =, @€ is the limit.
If @ is definable as W — {w | ¢(W, w)}
for a I formula ¢(W, w) with a free set variable W, then write
¢>=(w) for w € &>,
If ¢ also has free variable x, and wy € w, can define

R(x) & ¢*°(x, wo)

Such an R is said to be [-IND.
If ¢ is positive, then R is pos-I"-IND.

Kleene showed that
pos-N°-IND = N}

The fixpoint hierarchy

Take first-order arithmetic and add set variables X, membership €,
and an operator to form inductive definitions:

p(w, W).g(w, W)

denotes the set inductively defined by ¢ (must be positive).
Define ZS = ):?; ne = -xk:

and P(x) to be Z‘H’H if there is I}, Q(w, W, x) such that
P(x) & 1 e p(w, W).Q(w, W, x).

Note that T} = pos-M9-IND = 1.

The fixpoint hierarchy is strict by ‘the usual argument’.

.came from Computer Science

In modal logic, don't need individual variables: [|® means s € [|®
where s is the ‘current state’.

So the fixpoint extension of modal logic looks like yZ.®(Z), with
Z a variable over sets of states.

The fixpoint hierarchy in modal fixpoint logic (alias modal
mu-calculus) pZy.vZ>.pZs . .. is important for several reasons —
and was early understood to be intimately connected with Rabin
automata and parity games.

Automata and modal mu-calculus

A Rabin automaton is a finite automaton equipped with m pairs
(Ri, G;) of subsets of states.

An infinite run is accepted if there some i such that R; is seen
finitely often and G; is seen infinitely often: or, so to say,

\/ (ﬁOOR,‘ A OOG,')

1<i<m

Rabin automata correspond to certain fixpoint languages; m
corresponds to alternation depth.

In an alternating Rabin automaton, we play a Gale-Stewart style
game on the automaton, with the above winning condition.

They are equivalent to alternating parity automata. Here we have
sets Xy, Xo, X3, X4, ..., Xom; the winning condition is: the highest
X; seen infinitely often must be even.

These are equivalent to modal mu-calculus: 2m corresponds to
fixpoint alternation.

Now, the parity condition says:

OOXQm \ (“OOXan—l A (OOXQm—Q
V.../\(OOXQ\/“OOXl)...))

Parity and Rabin conditions are boolean combinations of co and
—00.




The game quantifier; determinacy

Let P(a, x) define a family of games; define
Oa.P(a, x) < x € { x| Eloise wins P(«, x) }

(so loosely O = 3v3Iv...)

If Pis I” then Da.Pis OF.

Martin's theorem says Det(Al): if P is A} then the game P is
determined.

If [ is a known class, what do we know about D/ ?

In general: if Det(l) (and ...) then =9 = 9=l

For analytical I” we have O}, = X} ;; and assuming Det(X}) also
ort=nt,,.

Games and induction

Kechris & Moschovakis showed that
o%0 =My

Solovay showed
0% = pos-¥1-IND

Now I} =~} = ~¥¥. So putting it another way:

ox? = =¥
ox3 = ¥

The computer science version suggests how to continue . ..

Playing games with arithmetic fixpoints

Take an arithmetic fixpoint formula of the form
IJX2m_1.UX2m_2. . UXQ.[.IX1.¢

We can define a game P on w such that Eloise wins iff the formula
is true.

How? It is exactly an ‘interpreter’: build interpreter machine, with
states coded as integers. For correctness, need exactly that the
plays satisfy a parity condition: highest X; seen infinitely often is
even. (Why? By transferring via modal mu-calculus; or directly.)
Therefore any fixpoint property Q is Da.P for some parity
condition P.

What is a parity condition? ‘coX; in o’ says that

Vj.3k > j.'X; seen at a(k)'.

So it is M3; so parity is V9 (boolean closure of ¥9).

From fixpoints via parity to difference hierarchies

So we have ¥}, C OV for all n.
Can we refine this?

The difference hierarchy over Zg is defined by
H-%) m-miam

We may as well define ©§ = 9. Then Kechris-Moschovakis and

Solovay give us
d 8
¥ =058 ¥4 =9%9

Is this the right formulation for the generalization?

By inspection the parity condition of rank m is X9,
By more careful inspection it is actually 2171-

(Why? Because rank 1 is ‘finitely often Xi', which can only be
true if play terminates: 3j.'play stops at a(j)" which is only ¥9.)

From differences to fixpoints

So we now have

o) u
The converse is harder. The idea is to extend Solovay, which
analysed Wolfe's proof of Det(X9).
Suppose P(a) < (3i.Q(i,a)) A R(a) is X2, |,
so Q is I’I? and R is ﬂg.
We define inductively ‘easy winning positions’ u = ag ... ax for
Eloise by
W¢ = { u| 3i.'Eloise wins H‘-C from u' },
where HY is defined in terms of R, W<¢ and Q.
It can be shown that Eloise wins from v iff u € W, Then W is
an inductive definition with a (by induction) M% . ; body, so is
., QED.
So we have the theorem

¥ =9o%8

Onwards and Upwards . ..

It is ‘well-known' that A = UC<wa Z‘g (and similarly for higher
A?,), for the transfinite difference hierarchy.
So is it the case that

T, =9or%?
(For ¢ < w{¥ and appropriate transfinite extension of fixpoint
hierarchy.)
Yes ... though now fixpoint satisfaction no longer corresponds to
general transfinite parity games, but rather to certain well-behaved
transfinite parity games.

(Joint work with Jacques Duparc and Sandra Quickert)




. with WWW

Another way of understanding what happens as we climb the
difference hierarchy.

The effective Wadge degrees of X9 are (w{*)" (and we hope this
continues transfinitely).

There is an operation on Wadge games which has the effect of
increasing the degree by a multiplicative factor of wfX.

This operation is roughly: allow one player to cancel the game and
start again, perhaps switching to the complement of ‘his’ domain.
He's allowed to do this a finite number of times.

In a loose sense, this corresponds at the strategy computation level
to wrapping an inductive definition around your existing strategy.

Question: what does the game quantifier do to Wadge degrees?

(Joint work with Jacques Duparc and Sandra Quickert)




