
Independence-friendly logics

Julian Bradfield

Laboratory for Foundations of Computer Science

University of Edinburgh

Introduction

Independence-friendly logic is a variation and extension of
first-order logic with a natural(?) concurrent or distributed
interpretation of its semantics. Its proponent(s) have argued for its
usefulness to various communities – logicians, mathematicians,
linguists.

Many others have begged to differ.

Introduction

Independence-friendly logic is a variation and extension of
first-order logic with a natural(?) concurrent or distributed
interpretation of its semantics. Its proponent(s) have argued for its
usefulness to various communities – logicians, mathematicians,
linguists.

Many others have begged to differ.

Talk Structure

I Independence-friendly logics
I the Henkin ancestor
I Hintikka’s IF logic
I and issues therewith
I linguistic applications

I IF modal logic à la Henkin

I and its mu-calculus
I IF modal logic à la Hintikka

I sequential (Tulenheimo)
I concurrent (JCB)
I mu-calculus

Henkin quantifiers

IF logic is another way of presenting the well known Henkin
quantifiers.

Henkin (branching) quantifiers allow some quantifiers to be
‘independent’ of other quantifiers:

∀x ∃y
∀u ∃v :�(x ; y ; u; v)

with a semantics via Skolem functions with a limited number of
arguments:

∃f ; g :∀x ; u:�(x ; f (x); u; g(u))

Well known to have Σ1
1 power.

Not much used, although have appeared fleetingly in hardware
verification.

Henkin quantifiers

IF logic is another way of presenting the well known Henkin
quantifiers.

Henkin (branching) quantifiers allow some quantifiers to be
‘independent’ of other quantifiers:

∀x ∃y
∀u ∃v :�(x ; y ; u; v)

with a semantics via Skolem functions with a limited number of
arguments:

∃f ; g :∀x ; u:�(x ; f (x); u; g(u))

Well known to have Σ1
1 power.

Not much used, although have appeared fleetingly in hardware
verification.

Henkin quantifiers

IF logic is another way of presenting the well known Henkin
quantifiers.

Henkin (branching) quantifiers allow some quantifiers to be
‘independent’ of other quantifiers:

∀x ∃y
∀u ∃v :�(x ; y ; u; v)

with a semantics via Skolem functions with a limited number of
arguments:

∃f ; g :∀x ; u:�(x ; f (x); u; g(u))

Well known to have Σ1
1 power.

Not much used, although have appeared fleetingly in hardware
verification.

IF logic

Hintikka–Sandu independence-friendly logic is another way of
expressing this:

∀x :∃y :∀u={ x ; y }:∃v={ x ; y }:�

with a semantics originally via imperfect information games: in the
verification game, Eloise has to choose a value for v without
knowing (equivalently, uniformly in) the values of x and y .

We’ll look at IF logic in a bit more detail:

IF logic

Hintikka–Sandu independence-friendly logic is another way of
expressing this:

∀x :∃y :∀u={ x ; y }:∃v={ x ; y }:�

with a semantics originally via imperfect information games: in the
verification game, Eloise has to choose a value for v without
knowing (equivalently, uniformly in) the values of x and y .

We’ll look at IF logic in a bit more detail:

IF syntax

Atomic formulae are usual first-order relations.

Conjunction and disjunction. If � and are formulae, then
� ∨ and (� ∧) are formulae.

Quantifiers. If � is a formula, x a variable, and W a finite set of
variables, then ∀x=W :� and ∃x=W :� are formulae. If W is empty,
we write just ∀x :� and ∃x :�.

Game negation. If � is a formula, so is ∼�.

Independent connectives. If � and are formulae, and W a
finite set of variables, then �∨=W and (�∧=W) are formulae.

For most purposes in this talk, forget negation (but remember that
it’s lurking). Also forget the independent connectives (mainly for
simplicity).

This is not Hintikka’s language! He only allowed ∃x=W :� where
W are universal variables; and stated that all previous existential
varibles are implicitly included in W .

IF syntax

Atomic formulae are usual first-order relations.

Conjunction and disjunction. If � and are formulae, then
� ∨ and (� ∧) are formulae.

Quantifiers. If � is a formula, x a variable, and W a finite set of
variables, then ∀x=W :� and ∃x=W :� are formulae. If W is empty,
we write just ∀x :� and ∃x :�.

Game negation. If � is a formula, so is ∼�.

Independent connectives. If � and are formulae, and W a
finite set of variables, then �∨=W and (�∧=W) are formulae.

For most purposes in this talk, forget negation (but remember that
it’s lurking). Also forget the independent connectives (mainly for
simplicity).

This is not Hintikka’s language! He only allowed ∃x=W :� where
W are universal variables; and stated that all previous existential
varibles are implicitly included in W .

IF syntax

Atomic formulae are usual first-order relations.

Conjunction and disjunction. If � and are formulae, then
� ∨ and (� ∧) are formulae.

Quantifiers. If � is a formula, x a variable, and W a finite set of
variables, then ∀x=W :� and ∃x=W :� are formulae. If W is empty,
we write just ∀x :� and ∃x :�.

Game negation. If � is a formula, so is ∼�.

Independent connectives. If � and are formulae, and W a
finite set of variables, then �∨=W and (�∧=W) are formulae.

For most purposes in this talk, forget negation (but remember that
it’s lurking). Also forget the independent connectives (mainly for
simplicity).

This is not Hintikka’s language! He only allowed ∃x=W :� where
W are universal variables; and stated that all previous existential
varibles are implicitly included in W .

IF syntax

Atomic formulae are usual first-order relations.

Conjunction and disjunction. If � and are formulae, then
� ∨ and (� ∧) are formulae.

Quantifiers. If � is a formula, x a variable, and W a finite set of
variables, then ∀x=W :� and ∃x=W :� are formulae. If W is empty,
we write just ∀x :� and ∃x :�.

Game negation. If � is a formula, so is ∼�.

Independent connectives. If � and are formulae, and W a
finite set of variables, then �∨=W and (�∧=W) are formulae.

For most purposes in this talk, forget negation (but remember that
it’s lurking). Also forget the independent connectives (mainly for
simplicity).

This is not Hintikka’s language! He only allowed ∃x=W :� where
W are universal variables; and stated that all previous existential
varibles are implicitly included in W .

IF syntax

Atomic formulae are usual first-order relations.

Conjunction and disjunction. If � and are formulae, then
� ∨ and (� ∧) are formulae.

Quantifiers. If � is a formula, x a variable, and W a finite set of
variables, then ∀x=W :� and ∃x=W :� are formulae. If W is empty,
we write just ∀x :� and ∃x :�.

Game negation. If � is a formula, so is ∼�.

Independent connectives. If � and are formulae, and W a
finite set of variables, then �∨=W and (�∧=W) are formulae.

For most purposes in this talk, forget negation (but remember that
it’s lurking). Also forget the independent connectives (mainly for
simplicity).

This is not Hintikka’s language! He only allowed ∃x=W :� where
W are universal variables; and stated that all previous existential
varibles are implicitly included in W .

Game semantics for IF

Standard Hintikka-style game for first-order logic, with the addition
of imperfect information: at ∃v={ x }, an Eloise-winning strategy
for choosing v must be uniform in the possible values of x
(because she’s not supposed to know what x is).

Then as usual a formula is true iff Eloise has a uniform winning
strategy.

A formula is false iff Abelard has a uniform winning strategy.

Tertium datur! A formula is undetermined if neither player has a
uniform winning strategy.

Game semantics for IF

Standard Hintikka-style game for first-order logic, with the addition
of imperfect information: at ∃v={ x }, an Eloise-winning strategy
for choosing v must be uniform in the possible values of x
(because she’s not supposed to know what x is).

Then as usual a formula is true iff Eloise has a uniform winning
strategy.

A formula is false iff Abelard has a uniform winning strategy.

Tertium datur! A formula is undetermined if neither player has a
uniform winning strategy.

Game semantics for IF

Standard Hintikka-style game for first-order logic, with the addition
of imperfect information: at ∃v={ x }, an Eloise-winning strategy
for choosing v must be uniform in the possible values of x
(because she’s not supposed to know what x is).

Then as usual a formula is true iff Eloise has a uniform winning
strategy.

A formula is false iff Abelard has a uniform winning strategy.

Tertium datur! A formula is undetermined if neither player has a
uniform winning strategy.

Some friendly formulae

The singleton formula:

∀x :∃y=x :x = y

A valid(?) formula:
∃x :∃y=x :x = y

The Hintikka infinity formula:

∃c:∀x :∀u:∃y=u:∃v=x ; y :(y = v ⇔ x = u) ∧ y 6= c

Some friendly formulae

The singleton formula:

∀x :∃y=x :x = y

A valid(?) formula:
∃x :∃y=x :x = y

The Hintikka infinity formula:

∃c:∀x :∀u:∃y=u:∃v=x ; y :(y = v ⇔ x = u) ∧ y 6= c

Some friendly formulae

The singleton formula:

∀x :∃y=x :x = y

A valid(?) formula:
∃x :∃y=x :x = y

The Hintikka infinity formula:

∃c:∀x :∀u:∃y=u:∃v=x ; y :(y = v ⇔ x = u) ∧ y 6= c

Some less friendly formulae

The Hodges signalling formula:

∀x :∃z:∃y=x :x = y

The Caicedo–Krynicki infinity formula

∃c:∀x :∃y :∃z=x :x = z ∧ y 6= c

Some less friendly formulae

The Hodges signalling formula:

∀x :∃z:∃y=x :x = y

The Caicedo–Krynicki infinity formula

∃c:∀x :∃y :∃z=x :x = z ∧ y 6= c

Skolem semantics

Rather than games, use Skolem functions as originally done for
Henkin quantifiers.

Any IF sentence can be skolemized to a Σ1
1 sentence – and vice

versa.

The skolemization is either true or false . . . skolem truth iff game
truth. (Skolem function = choice function in strategy)

Do you start skolemization from the outside and work in, or vice
versa? It matters – inside–out is a Good Thing (but Hintikka
implicitly did outside–in).

Skolem semantics

Rather than games, use Skolem functions as originally done for
Henkin quantifiers.

Any IF sentence can be skolemized to a Σ1
1 sentence – and vice

versa.

The skolemization is either true or false . . . skolem truth iff game
truth. (Skolem function = choice function in strategy)

Do you start skolemization from the outside and work in, or vice
versa? It matters – inside–out is a Good Thing (but Hintikka
implicitly did outside–in).

Trump semantics of IF

Hodges’ Tarski-style semantics for IF logic.

Really just a coding up of strategies.

The meaning of a formula is a set of sets of assignments to its free
variables. Each set is a trump, from which Eloise can win.

Example: the trumps of ∃y={ x }:x = y are the singleton sets
{ { a } }. Hence ∀x :∃y={ x }:x = y has trumps only if the domain
has just one value.

It’s easily seen that naive computation of trumps is doubly
exponential in formula size. . .

. . . but IF sentences are ∃SO-expressible, hence NP.

Trump semantics of IF

Hodges’ Tarski-style semantics for IF logic.

Really just a coding up of strategies.

The meaning of a formula is a set of sets of assignments to its free
variables. Each set is a trump, from which Eloise can win.

Example: the trumps of ∃y={ x }:x = y are the singleton sets
{ { a } }. Hence ∀x :∃y={ x }:x = y has trumps only if the domain
has just one value.

It’s easily seen that naive computation of trumps is doubly
exponential in formula size. . .

. . . but IF sentences are ∃SO-expressible, hence NP.

Trump semantics of IF

Hodges’ Tarski-style semantics for IF logic.

Really just a coding up of strategies.

The meaning of a formula is a set of sets of assignments to its free
variables. Each set is a trump, from which Eloise can win.

Example: the trumps of ∃y={ x }:x = y are the singleton sets
{ { a } }. Hence ∀x :∃y={ x }:x = y has trumps only if the domain
has just one value.

It’s easily seen that naive computation of trumps is doubly
exponential in formula size. . .

. . . but IF sentences are ∃SO-expressible, hence NP.

Trump semantics of IF

Hodges’ Tarski-style semantics for IF logic.

Really just a coding up of strategies.

The meaning of a formula is a set of sets of assignments to its free
variables. Each set is a trump, from which Eloise can win.

Example: the trumps of ∃y={ x }:x = y are the singleton sets
{ { a } }. Hence ∀x :∃y={ x }:x = y has trumps only if the domain
has just one value.

It’s easily seen that naive computation of trumps is doubly
exponential in formula size. . .

. . . but IF sentences are ∃SO-expressible, hence NP.

By the way . . .

Lots of things you take for granted in FOL can’t be done in IF.

E.g.: Re-use of variables is not something trivially removable by
renaming.

We haven’t really mentioned open formulae: Hintikka didn’t deal
with them, Hodges, Caicedo–Krynicki do.

Janssen has a different semantics.

By the way . . .

Lots of things you take for granted in FOL can’t be done in IF.

E.g.: Re-use of variables is not something trivially removable by
renaming.

We haven’t really mentioned open formulae: Hintikka didn’t deal
with them, Hodges, Caicedo–Krynicki do.

Janssen has a different semantics.

By the way . . .

Lots of things you take for granted in FOL can’t be done in IF.

E.g.: Re-use of variables is not something trivially removable by
renaming.

We haven’t really mentioned open formulae: Hintikka didn’t deal
with them, Hodges, Caicedo–Krynicki do.

Janssen has a different semantics.

Why?

Much of the complexity is because IF games are not just imperfect
information, but imperfect recall – players have to forget things,
both things they did and things they know.

This can be addressed by making Eloise and Abelard into teams
(as is natural in the modal logics we’ll see later). Väänänen is even
developing ‘team logic’.

See Dechesne’s thesis for more on this.

Why?

Much of the complexity is because IF games are not just imperfect
information, but imperfect recall – players have to forget things,
both things they did and things they know.

This can be addressed by making Eloise and Abelard into teams
(as is natural in the modal logics we’ll see later). Väänänen is even
developing ‘team logic’.

See Dechesne’s thesis for more on this.

What is IF logic good for?

According to Hintikka:

I IF logic is a Right Thing, and first-order logic is a Wrong
Thing.

I IF logic is good for mathematics. (E.g. definition of uniform
continuity.)

I IF logic is good for natural language. (E.g. ‘Some relative of
every townsman knows some friend of every countryman.’)

What is IF logic good for?

According to Hintikka:

I IF logic is a Right Thing, and first-order logic is a Wrong
Thing.

I IF logic is good for mathematics. (E.g. definition of uniform
continuity.)

I IF logic is good for natural language. (E.g. ‘Some relative of
every townsman knows some friend of every countryman.’)

What is IF logic good for?

According to Hintikka:

I IF logic is a Right Thing, and first-order logic is a Wrong
Thing.

I IF logic is good for mathematics. (E.g. definition of uniform
continuity.)

I IF logic is good for natural language. (E.g. ‘Some relative of
every townsman knows some friend of every countryman.’)

Linguistic applications

Goes back to early 70s work on branching quantifiers in English.
‘Some relative of every townsman knows some friend of every
countryman’ is a Henkin quantified sentence (allegedly).

Barwise tried such sentences out on people – people don’t appear
to have the Henkin interpretation.

One class of exception:
(most

most

)
, as in ‘most of the boys and most

of the girls kissed each other’.

However, Sevenster searched the British National Corpus for such
sentences – without success.

(See Sevenster’s thesis for more about this.)

Linguistic applications

Goes back to early 70s work on branching quantifiers in English.
‘Some relative of every townsman knows some friend of every
countryman’ is a Henkin quantified sentence (allegedly).

Barwise tried such sentences out on people – people don’t appear
to have the Henkin interpretation.

One class of exception:
(most

most

)
, as in ‘most of the boys and most

of the girls kissed each other’.

However, Sevenster searched the British National Corpus for such
sentences – without success.

(See Sevenster’s thesis for more about this.)

Linguistic applications

Goes back to early 70s work on branching quantifiers in English.
‘Some relative of every townsman knows some friend of every
countryman’ is a Henkin quantified sentence (allegedly).

Barwise tried such sentences out on people – people don’t appear
to have the Henkin interpretation.

One class of exception:
(most

most

)
, as in ‘most of the boys and most

of the girls kissed each other’.

However, Sevenster searched the British National Corpus for such
sentences – without success.

(See Sevenster’s thesis for more about this.)

Linguistic applications

Goes back to early 70s work on branching quantifiers in English.
‘Some relative of every townsman knows some friend of every
countryman’ is a Henkin quantified sentence (allegedly).

Barwise tried such sentences out on people – people don’t appear
to have the Henkin interpretation.

One class of exception:
(most

most

)
, as in ‘most of the boys and most

of the girls kissed each other’.

However, Sevenster searched the British National Corpus for such
sentences – without success.

(See Sevenster’s thesis for more about this.)

A use of IF logic in formal methods?

I claim: IF logic provides a natural meta-language for some natural
concurrent temporal logics with obvious applicability.

Concurrent modalities

There are situations in which it seems natural to want to write

[]

〈〉
�

For example:

I Scissors–Paper–Stone

I Bidding on Ebay . . .

I or in Scottish house-buying.

I Trains entering a section of single-line working.

In all cases, we need to choose an action that gives us the desired
results, without knowing what’s happening elsewhere.

It’s easy to define []
〈〉 ,

[] 〈〉
[] 〈〉 etc. on systems with two parallel

components.

Concurrent modalities

There are situations in which it seems natural to want to write

[]

〈〉
�

For example:

I Scissors–Paper–Stone

I Bidding on Ebay . . .

I or in Scottish house-buying.

I Trains entering a section of single-line working.

In all cases, we need to choose an action that gives us the desired
results, without knowing what’s happening elsewhere.

It’s easy to define []
〈〉 ,

[] 〈〉
[] 〈〉 etc. on systems with two parallel

components.

Henkin modal logic

Consider systems of parallel components T = ‖1≤i≤nTi (for some
‖).
Define our desired modalities []

〈〉 ,
[] 〈〉
[] 〈〉 etc. via Henkin quantifiers:

e.g. on T = T1 ‖S T2,

(s1; s2) |= [a1] 〈b1〉
[a2] 〈b2〉

�

holds iff

∀(a1; s
′
1)∃(b1; s

′′
1)

∀(a2; s
′
2 ∃(b2; s

′′
2)

(s1; s2)
a1⊗a2−→ (s ′1; s

′
2)

b1⊗b2−→ (s ′′1 ; s
′′
2) ∧ (s ′′1 ; s

′′
2) |= �

(This is lying a bit . . .)

What use is [] 〈〉
[] 〈〉?

In contexts where you have cooperating agents with
communication problems (e.g. firewalled, on Mars, etc.) and they
need to make independent decisions to achieve a common goal.

Think in terms of strategies: [] 〈〉
[] 〈〉� says each of your teams has a

strategy to make a choice in reaction to local events, such that
good things happen.
[] 〈〉
[] 〈〉, like the Henkin quantifier, is quite expressive: it can be
NP-complete to verify.

Henkin modal mu-calculus and beyond
[] 〈〉
[] 〈〉 etc. are just modal operators on global states, and it is trivial
to add them to modal mu-calculus to get a temporal logic, which
subsumes and extends the ATL of Alur, Henzinger and Kupferman.

But this is boring – and not the right sort of expressive. We want
to allow all sorts of other things to happen between the [] and the
〈〉.
Would like to write things like [a]〈b〉�⊗ [a]〈b〉 , or

⊗ �X :P ∨ [a]X

�Y :Q ∧ 〈b〉Y

or even

�Z :R ∨
(
⊗ �X :P ∨ [a]Z

�Y :(Q ∨ Z) ∧ 〈b〉Y
)

What would this mean? Back to basics . . .

Henkin modal mu-calculus and beyond
[] 〈〉
[] 〈〉 etc. are just modal operators on global states, and it is trivial
to add them to modal mu-calculus to get a temporal logic, which
subsumes and extends the ATL of Alur, Henzinger and Kupferman.

But this is boring – and not the right sort of expressive. We want
to allow all sorts of other things to happen between the [] and the
〈〉.
Would like to write things like [a]〈b〉�⊗ [a]〈b〉 , or

⊗ �X :P ∨ [a]X

�Y :Q ∧ 〈b〉Y

or even

�Z :R ∨
(
⊗ �X :P ∨ [a]Z

�Y :(Q ∨ Z) ∧ 〈b〉Y
)

What would this mean? Back to basics . . .

Henkin modal mu-calculus and beyond
[] 〈〉
[] 〈〉 etc. are just modal operators on global states, and it is trivial
to add them to modal mu-calculus to get a temporal logic, which
subsumes and extends the ATL of Alur, Henzinger and Kupferman.

But this is boring – and not the right sort of expressive. We want
to allow all sorts of other things to happen between the [] and the
〈〉.
Would like to write things like [a]〈b〉�⊗ [a]〈b〉 , or

⊗ �X :P ∨ [a]X

�Y :Q ∧ 〈b〉Y

or even

�Z :R ∨
(
⊗ �X :P ∨ [a]Z

�Y :(Q ∨ Z) ∧ 〈b〉Y
)

What would this mean? Back to basics . . .

Independence-friendly modal logic

To get a firm semantic ground, go back to IF logic à la Hintikka,
and use it as a meta-language. Recall that IF logic has ∀x :∃y=x :�,
meaning y is to be chosen independently of x .

We produce an independence-friendly version of modal logic by
tagging modalities to allow the slash notation:

[a]�〈b〉�[c]=�;�〈d〉�=�;��

What do we mean in a modal logic by requiring a choice at one
point to be independent of a choice at an earlier point?

Independence-friendly modal logic

To get a firm semantic ground, go back to IF logic à la Hintikka,
and use it as a meta-language. Recall that IF logic has ∀x :∃y=x :�,
meaning y is to be chosen independently of x .

We produce an independence-friendly version of modal logic by
tagging modalities to allow the slash notation:

[a]�〈b〉�[c]=�;�〈d〉�=�;��

What do we mean in a modal logic by requiring a choice at one
point to be independent of a choice at an earlier point?

IFML on transition systems

Tero Tulenheimo has studied IFML on transition systems: []�〈〉�=�
means literally the successor state chosen at � must be chosen
uniformly in the successor state chosen at �.

It turns out that this IFML can express few non-ML properties:
essentially only that of a state being a common successor. E.g:
[]�〈〉�=�tt is true of the left-hand model below because the apex of
the diamond can be uniformly chosen as a second step regardless
of whether the first step went left or right, but not of the bisimilar
right-hand model.

•
↗ ↖• •
↖ ↗•

• •
↖ ↗• •

↖ ↗•

This is not very powerful – and no property like [] 〈〉
[] 〈〉 is expressible.

IFML on transition systems

Tero Tulenheimo has studied IFML on transition systems: []�〈〉�=�
means literally the successor state chosen at � must be chosen
uniformly in the successor state chosen at �.

It turns out that this IFML can express few non-ML properties:
essentially only that of a state being a common successor. E.g:
[]�〈〉�=�tt is true of the left-hand model below because the apex of
the diamond can be uniformly chosen as a second step regardless
of whether the first step went left or right, but not of the bisimilar
right-hand model.

•
↗ ↖• •
↖ ↗•

• •
↖ ↗• •

↖ ↗•

This is not very powerful – and no property like [] 〈〉
[] 〈〉 is expressible.

IFML on concurrent systems

In a concurrent or distributed setting, such as Petri nets, process
algebras, event structures etc., []�〈〉�=� makes good sense if an
event or local state is chosen at � and is concurrent or disjoint
from that at � – it is not only possible, but natural to choose �
without knowing �.

Has NP power – []�〈〉�[]〈〉�=�;� is equivalent to [] 〈〉
[] 〈〉, so can code

Henkin quantifier.

This gives a semantics to IFML which encompasses Henkin ML –
and extends it.

IFML on concurrent systems

In a concurrent or distributed setting, such as Petri nets, process
algebras, event structures etc., []�〈〉�=� makes good sense if an
event or local state is chosen at � and is concurrent or disjoint
from that at � – it is not only possible, but natural to choose �
without knowing �.

Has NP power – []�〈〉�[]〈〉�=�;� is equivalent to [] 〈〉
[] 〈〉, so can code

Henkin quantifier.

This gives a semantics to IFML which encompasses Henkin ML –
and extends it.

IFML on concurrent systems

In a concurrent or distributed setting, such as Petri nets, process
algebras, event structures etc., []�〈〉�=� makes good sense if an
event or local state is chosen at � and is concurrent or disjoint
from that at � – it is not only possible, but natural to choose �
without knowing �.

Has NP power – []�〈〉�[]〈〉�=�;� is equivalent to [] 〈〉
[] 〈〉, so can code

Henkin quantifier.

This gives a semantics to IFML which encompasses Henkin ML –
and extends it.

IF modal mu-calculus

Recall the trump semantics for IF logic. This is a normal Tarskian
semantics over a lattice. So we can invent a fixpoint extension
IF-LFP of IF logic. (A talk in itself.)

Then we can use IF-LFP to give a semantics to IF modal
mu-calculus.

Formulae like
[]��Z :〈〉=�Z ∨ 〈〉�

now make sense (‘whatever you do, I can get to �, though I may
first have to do a bunch of things that don’t depend on what you
did’); or

�Z (�):[]�Z (�) ∧ 〈〉=��

‘I can always get to � with the same action, regardless of what you
do’.

IF modal mu-calculus

Recall the trump semantics for IF logic. This is a normal Tarskian
semantics over a lattice. So we can invent a fixpoint extension
IF-LFP of IF logic. (A talk in itself.)

Then we can use IF-LFP to give a semantics to IF modal
mu-calculus.

Formulae like
[]��Z :〈〉=�Z ∨ 〈〉�

now make sense (‘whatever you do, I can get to �, though I may
first have to do a bunch of things that don’t depend on what you
did’); or

�Z (�):[]�Z (�) ∧ 〈〉=��

‘I can always get to � with the same action, regardless of what you
do’.

IF modal mu-calculus

Recall the trump semantics for IF logic. This is a normal Tarskian
semantics over a lattice. So we can invent a fixpoint extension
IF-LFP of IF logic. (A talk in itself.)

Then we can use IF-LFP to give a semantics to IF modal
mu-calculus.

Formulae like
[]��Z :〈〉=�Z ∨ 〈〉�

now make sense (‘whatever you do, I can get to �, though I may
first have to do a bunch of things that don’t depend on what you
did’); or

�Z (�):[]�Z (�) ∧ 〈〉=��

‘I can always get to � with the same action, regardless of what you
do’.

IF modal mu-calculus

Recall the trump semantics for IF logic. This is a normal Tarskian
semantics over a lattice. So we can invent a fixpoint extension
IF-LFP of IF logic. (A talk in itself.)

Then we can use IF-LFP to give a semantics to IF modal
mu-calculus.

Formulae like
[]��Z :〈〉=�Z ∨ 〈〉�

now make sense (‘whatever you do, I can get to �, though I may
first have to do a bunch of things that don’t depend on what you
did’); or

�Z (�):[]�Z (�) ∧ 〈〉=��

‘I can always get to � with the same action, regardless of what you
do’.

IF modal mu-calculus is in its infancy. It makes most sense
interpreted on true concurrent structures such as coherent event
structures.

IF-LFP is horrifically powerful – how expressive is IF-�? (But
they’re still decidable to verify on finite systems (phew!).)

More importantly: are there real uses for it? I’ve suggested it has a
natural link with distributed systems such as MAS. Does it?

IF modal mu-calculus is in its infancy. It makes most sense
interpreted on true concurrent structures such as coherent event
structures.

IF-LFP is horrifically powerful – how expressive is IF-�? (But
they’re still decidable to verify on finite systems (phew!).)

More importantly: are there real uses for it? I’ve suggested it has a
natural link with distributed systems such as MAS. Does it?

Thanks

to all those who have talked with me (or let me talk at them)
about this and related areas - in particular, in reverse chronological
order:

Francien Dechesne, Merlijn Sevenster, Tero Tulenheimo, Carla
Delgado, Stephan Kreutzer, Gabriel Sandu, Juliana Küster Filipe,
Mike Wooldridge, Michael Fisher, Sibylle Fröschle.

For more on many aspects, see Ph.D. theses of Tulenheimo,
Dechesne and Sevenster (and of Ahti Pietarinen).

