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1 Introduction

Modal mu-calculus is a logic used extensively in certain areas of computer science, but also of considerable
intrinsic mathematical and logical interest. Its defining feature is the addition of inductive definitions to modal
logic; thereby it achieves a great increase in expressive power, and an equally great increase in difficulty
of understanding. It includes many of the logics used in systems verification, and is quite straightforward to
evaluate. It also provides one of the strongest examples of the connections between modal and temporal logics,
automata theory and the theory of games.

In this chapter, we survey a range of the questions and results about the modal mu-calculus and related
logics. For the most part, we remain at survey level, giving only outlines of proofs; but in places, determined
partly by our own interests and partly by our sense of which problems have been – or had been – the longest-
standing thorns in the side of the mu-calculus community, we go into more detail.

We start with an account of the historical context leading to the introduction of the modal mu-calculus.
Then we define the logic formally, describe some approaches to gaining an intuitive understanding of formulae,
and establish the main theorem about the semantics. Following that, we discuss how the modal mu-calculus
has the tree model property and relates to some other temporal logics, to automata and to games. Next, an
account of decidability is given – this is one of the thorns, at least for those who find automata prickly. We
then consider briefly completeness, bisimulation invariance and the concept of fixpoint alternation, which plays
a part in several interesting questions about the logic. Finally, we look at some generalizations of the logic.

Notation:
Lµ means the modal mu-calculus, considered as a logical language (not as a theory). In general, the notation
follows as much as possible the standards for this book, but becauseLµ is mostly studied in a setting with
rather different traditions, and because we also need to notate several other concepts, we have made some
compromises. Few of these should cause any difficulty, but let us note the following. Since→ is often used
to represent the transition relation in models (alias the accessibility relation from modal logic), we use⇒
rather than→ for boolean implication. Structures, frames and models forLµ are usually viewed as transition
systems, and so are usually calledT with state spaceS. States within systems (i.e. worlds in the language of
modal logic) are typicallys, t, whereasp, q, r are states in an automaton. Hence we write atomic propositions
with capitalP,Q, . . . rather thanp, q, . . ., and similarly variables ranging over sets of states are writtenX,Y .

2 Contextual background

The modal mu-calculus comes not from the philosophical tradition of modal logic, but from the application of
modal and temporal logics to program verification. In this section, we outline the historical context forLµ.

2.1 Modal logics in program verification

The application of modal and temporal logics to programs is part of a line of program verification going back to
the 1960s and program schemes and Floyd–Hoare logic. Originally the emphasis was onproof: Floyd–Hoare
logic allows one to make assertions about programs, and there is a proof system to verify these assertions.
This line of work has, of course, continued and flourished, and today there are highly sophisticated theories
for proving properties of programs, with equally sophisticated machine support for these theories. However,
the use of proof systems has some disadvantages, and one hankers after a more purely algorithmic approach
to simple problems. One technique was pioneered by Manna and Pnueli [48], who turned program properties
into questions of satisfiability or validity in first order logic, which can then be attacked by means that are not
just proof-theoretic; this idea was later applied by them to linear temporal logics.

During the 1970s, the theory of program correctness was extended by investigating more powerful logics,
and studying them in a manner more similar to the traditions of mathematical logic. A family of logics which
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received much attention was that of dynamic logics, which can be seen as extending the ideas of Hoare logic
[57]. Dynamic logics are modal logics, where the different modalities correspond to the execution of different
programs—the formula〈α〉φ is read as ‘it is possible forα to execute and result in a state satisfyingφ’. The
programs may be of any type of interest; the variety of dynamic logic most often referred to is a propositional
language in which the programs are built from atomic programs by regular expression constructors; henceforth,
Propositional Dynamic Logic, PDL, refers to this logic. PDL is interpreted with respect to a model on a Kripke
structure, formalizing the notion of the global state in which programs execute and which they change—each
point in the structure corresponds to a possible state, and programs determine a relation between states giving
the changes effected by the programs.

Once one has the idea of a modal logic defined on a Kripke structure, it becomes quite natural to think of
the finite case and write programs which just check whether a formula is satisfied. This idea was developed in
the early 80s by Clarke, Emerson, Sistla and others. They worked with a logic that has much simpler modalities
than PDL—in fact, it has just a single ‘next state’ modality—but which has built-in temporal connectives such
as ‘until’. This logic is CTL, and it and its extensions remain some of the most popular logics for expressing
properties of systems.

Meanwhile, the theory of process calculi was being developed in the late 70s, most notably by Milner
[50]. An essential component was the use of labelled Kripke structures (‘labelled transition systems’) as a raw
model of concurrent behaviour. An important difference between the use of Kripke structures here and their use
in program correctness was that the states are the behaviour expressions themselves, which model concurrent
systems, and the labels on the accessibility relation (the transitions) are simple actions (and not programs). The
criterion for behavioural equivalence of process expressions was defined in terms of observational equivalence
(and later in terms of bisimulation relations). Hennessy and Milner introduced a primitive modal logic in which
the modalities refer to actions:〈a〉φ ‘it is possible to do ana action and then haveφ be true’, and its dual[a]φ
‘φ holds after everya action’. Together with the usual boolean connectives, this gives Hennessy–Milner logic
[31], HML, which was introduced as an alternative exposition of observational equivalence. However, as a
logic HML is obviously inadequate to express many properties, as it has no means of saying ‘always in the
future’ or other temporal connectives—except by allowing infinitary conjunction. Using an infinitary logic is
undesirable both for the obvious reason that infinite formulae are not amenable to automatic processing, and
because infinitary logic gives much more expressive power than is needed to express temporal properties.

In 1983, Dexter Kozen published a study of a logic that combined simple modalities, as in HML, with
fixpoint operators to provide a form of recursion. This logic, the modal mu-calculus, has become probably the
most studied of all temporal logics of programs. It has a simple syntax, an easily given semantics, and yet the
fixpoint operators provide immense power. Most other temporal logics, such as the CTL family, can be seen
as fragments ofLµ. Moreover, this logic lends itself to transparent model-checking algorithms.

Another ‘root’ to understanding modal logics is the work in the 60s on automata over infinite words and
trees by B̈uchi [13] and Rabin [60]. The motivation was decision questions of monadic second-order logics.
Büchi introduced automata as a normal form for such formulae. This work founded new connections to logic
and automata theory. Later it was realised that modal logics are merely sublogics of appropriate monadic
second-order logic, and that the automata normal forms provide a very powerful framework within which to
study properties of modal logic. A further development was the use of games by Gurevich and Harrington [30]
as an alternative to automata.

There is also an older game-theoretic tradition due to Ehrenfeucht and Fraı̈sśe, for understanding the ex-
pressive power of logics. These techniques are also applicable within process calculi. For instance bisimula-
tion equivalence can be naturally rendered as such a game, and expressivity of modal logics can be understood
using game-theoretic techniques.
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2.2 Precursors to modal mu-calculus

HML, Hennessy–Milner Logic [31], is a primitive modal logic of action. The syntax of HML has, in addition
to the boolean operators, a modality〈a〉φ, wherea is a processaction. A structure for the logic is just a
labelled transition system. Atomic formulas of the logic are the constants> and⊥. The meaning of〈a〉φ
is ‘it is possible to do ana-action to a state whereφ holds’. The formal semantics is given in the obvious
way by inductively defining when a state of a transition system, or a state of a process, has a property; for
example,s |= 〈a〉φ iff ∃t.s a−→ t ∧ t |= φ. We may also add some notion of variable or atomic proposition
to the logic, in which case we provide a valuation which maps a variable to the set of states at which it
holds. The expressive power of HML in this form is quite weak: obviously a given HML formula can only
make statements about a given finite number of steps into the future. HML was introduced not so much as a
language to express properties, but rather as an aid to understanding process equivalence: two (image-finite)
processes are equivalent iff they satisfy exactly the same HML formulae. To obtain the expressivity desired in
practice, we need stronger logics.

The logic PDL, Propositional Dynamic Logic [57,25], as mentioned above, is both a development of
Floyd–Hoare style logics, and a development of modal logics. Recently, it has been used as a basis for de-
scription logics and logics of information. PDL is an extension of HML in the circumstance that the action set
has some structure. There is room for variation in the meaning of action, but in the standard logic, a program
is considered to have a number ofatomic actions, which in process algebraic terms are just process actions,
andα is allowed to be a regular expression over the atomic actions:a, α;β, α ∪ β, or α*. We may consider
atomic actions to be uninterpreted atoms; but in the development from Floyd–Hoare logics, one would see the
atomic actions as, for example, assignment statements in awhile program.

PDL enriches the labels in the modalities of HML. An alternative extension of HML is to include further
modalities. The branching time logic CTL, Computation Tree Logic [14], can be described in this way as
an extension of HML, with some extra ‘temporal’ operators which permit expression of liveness and safety
properties. For the semantics we need to consider ‘runs’ of a system. A run from an initial state or processs0
is a sequences0

a1−→ s1
a2−→ . . . which may have finite or infinite length; if it has finite length then its final

process is a ‘sink’ process which has no transitions. A runs0
a1−→ s1

a2−→ . . . has the propertyφU ψ, ‘φ until
ψ’, if there is ani ≥ 0 such thatsi |= ψ and for allj : 0 ≤ j < i, sj |= φ.

s0
a1−→ s1

a2−→ . . . si
ai+1−→ . . .

|= |= . . . |=

φ φ ψ

The formulaFφ = (>U φ) means ‘φ eventually holds’ andGφ = ¬(>U ¬φ): ‘φ always holds’. For each
‘temporal’ operator such asU there are two modal variants, a strong variant ranging over all runs of a process
and a weak variant ranging over some run of a process. We preface a strong version with∀ and a weak version
with ∃. If HML is extended with the two kinds of until operator the resulting logic is a slight but inessential
variant of CTL (CTL does not in its standard form mention action labels in modalities). The formal semantics
is given by inductively defining when a state (process) has a property. For instances |= ∀[φUψ] iff every run
of s has the propertyφU ψ.

CTL has variants and enrichments such as CTL* [24] and ECTL* [70]. These allow free mixing of path
operators and quantifiers: for example, the CTL* formula∀[P U∃FQ] is also a CTL formula, but∀[P UFQ]
is not, because theF is not immediately governed by a quantifier. Hence extensions also cover traditional
temporal logics—that is, literally logics of time—as advocated by Manna and Pnueli and others. In this view,
time is a linear sequence of instants, corresponding to the states of just one execution path through the program.
One can define a logic on paths which has operators©φ ‘in the next instant (on this path)φ is true’, andφUψ
‘φ holds untilψ holds (on this path)’; and then a system satisfies a formula if all execution paths satisfy the
formula—in CTL* terms, the specification is a path formula with a single outermost universal quantifier. One
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can also extend PDL with temporal operators, as in process logic.
There are extensions of all these logics to cover issues such as time and probability. The introduction of

such real-valued quantities poses a number of problems, and such logics are still under active development.

2.3 The small model property

A general result about many modal logics is that they have the small model property; that is if a formula is
satisfiable, then it is satisfiable by a model of some bounded size. Provided that model-checking is decidable,
which is the case for almost all temporal logics, this immediately gives decidability of satisfiability for the
logic, as one need simply check every transition system up to the size bound.

The technique used to establish the small model property for PDL (and therefore HML) is a classical
technique in modal logic, that offiltration. Let s be a state, satisfying propertyφ, in a possibly infinite
transition systemT. Let Γ be the set of all subformulas ofφ and their negations: in the case of PDL one also
counts〈α〉ψ and〈β〉ψ as subformulas of〈α∪ β〉ψ, 〈β〉ψ as a subformula of〈α;β〉ψ and〈α;α*〉ψ, and〈α〉ψ
as subformulas of〈α*〉ψ. The size ofΓ is proportional to|φ| (the length ofφ). One then filtersT throughΓ by
defining an equivalence relation on the states ofT, s ≡ t iff ∀ψ ∈ Γ.s |= ψ ⇔ t |= ψ. We define the filtered
model to have statesT/≡ and with atomic action relations given by[s] a−→ [t] iff ∃s′ ∈ [s], t′ ∈ [t].s′ a−→ t′.
The number of equivalence classes is at most2|Γ| and so isO(2|φ|). The rest of the proof shows that the filtered
model is indeed a model, in that[s] |= ψ iff s |= ψ for ψ ∈ Γ. For PDL the only case requiring comment is the
case〈α*〉ψ, which proceeds by an induction on the length of the witnessing sequence ofα’s. Consequently if
φ is a satisfiable PDL formula, then it has a model with sizeO(2|φ|), and in fact2|φ| suffices—see [25] for full
details.

In order to obtain an upper bound for satisfiability from the small model property, we also need to know
the complexity of model-checking, that is, determining whethers |= φ. It is straightforward to define an
inductive procedure for this, which is polynomial in the size of the formula and of the system. For example,
to determine the truth of〈α*〉φ, one computes the*-closure of theα relation, and then checks for anα*-
successor satisfyingφ. These results give an NTIME(cn) (wherec is a constant andn the formula size) upper
bound for the satisfiability problem. By a reduction to alternating Turing machines, [25] also gave a lower
bound of DTIME(cn/ lg n). A closer to optimal technique for satisfiability due to Pratt uses tableaux [58].

Although CTL, CTL* andLµ all have the finite model property, the filtration technique does not apply.
If one filtersT through a finite setΓ containing∀FQ unintended loops may be added. For instance ifT is
si

a−→ si+1 for 1 ≤ i < n andQ is only true at statesn thensi |= ∀FQ for eachi. But whenn is large enough
the filtered model will have at least one transition[sj ]

a−→ [si] wheni ≤ j < n, with the consequence that
[si] 6|= ∀FQ. The initial approach to showing the finite model property utilized semantic tableaux where one
explicitly builds a model for a satisfiable formula which has small size. But such a technique is very particular,
and more sophisticated methods based on automata are used for optimal results, as we shall mention later.

3 Syntax and semantics of modal mu-calculus

The defining feature of mu-calculi is the use of fixpoint operators. The use of fixpoint operators in program
logics goes back at least to De Bakker, Park and Scott [56]. However, their use in modal logics of programs
dates from work of Pratt, Emerson and Clarke and Kozen. Pratt’s version [59] used a fixpoint operator like
the minimization operator of recursion theory; although this is only superficially different, it seems to have
dissuaded people from using the logic in that form. Emerson and Clarke added fixed points to a temporal logic
to capture fairness and other correctness properties [21]. Kozen’s [35] paper introducedLµ as we use it today,
and established a number of basic results.

Fixpoint logics are traditionally considered hard to understand. Furthermore, their semantics requires a
familiarity with material that, although not difficult, is often omitted from undergraduate mathematics or logic
programmes. Whether for practical purposes, or to guide oneself through the formal proofs, it is therefore
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worthwhile to spend a little time on discussing an intuitive understanding ofLµ before going on to the defini-
tions.

3.1 Fixpoints as recursion

Suppose thatS is the state space of some system. For exampleS could be the set of all processes reachable
by arbitrary length sequences of transitions from some initial process. One way to provide semantics of a
state-based modal logic is to map formulaeφ to sets of states, that is to elements of℘S. For any formulaφ
this mapping is given by‖φ‖ 1 . The idea is that this mapping tells us at which states each formula holds. If we
allow our logic to contain variables with interpretations ranging over℘S, then we can view the semantics of a
formula with a free variable,φ(Z), as a functionf :℘S → ℘S. If f(S) ⊆ f(S′) wheneverS ⊆ S′ ⊆ S then
f is monotonic. If f(S) = S thenS is afixed pointof f (as repeated application off leavesS unchanged).
If we take the usual lattice structure on℘S, given by set inclusion, and iff is a monotonic function, then by
the Knaster–Tarski theorem we know thatf has fixed points, and indeed has a unique maximal and a unique
minimal fixed point. The maximal fixed-point is the union ofpost-fixed points,

⋃
{S ⊂ S | S ⊆ f(S)}, and

the minimal fixed-point is the intersection ofpre-fixed points,
⋂
{S ⊂ S | f(S) ⊆ S}. So we could extend

our basic logic with a minimal fixpoint operatorµ, so thatµZ.φ(Z) is a formula whose semantics is the least
fixed point off ; and similarly a maximal fixpoint operatorν, so thatνZ.φ(Z) is a formula whose semantics
is the greatest fixed point off (when the semantics ofφ(Z) is monotonic).

A good reason to do this is that it provides a semantics forrecursion, and adding recursion to the usual
modal logics provides a neat way of expressing all the usual operators of temporal logics. For example,
consider the CTL formula∀Gφ, ‘alwaysφ’. Another way of expressing this is to say that it is a property
X such that ifX is true, thenφ is true, and wherever we go next,X remains true; soX satisfies the modal
implicational equation

X ⇒ φ ∧ [−]X.

where[−]X means thatX is true at every immediate successor (see subsection 3.3). A solution to this equation
is precisely a post-fixed point of the formulaφ∧[−]X. But which solution of the possibly many is appropriate?
The only canonical post-fixed point is the largest, and this also makes sense, since if a state satisfiessome
solution, then it surely satisfies∀Gφ. Hence the meaning of the formula is the largest post-fixed point, which
by standard theory is exactly the largest fixed point,νX.φ ∧ [−]Z.

On the other hand, consider the CTL property∃Fφ, ‘there exists a path on whichφ eventually holds’. We
could write this recursively as ‘Y holds if eitherφ holds now, or there’s some successor on whichY is true’:

Y ⇐ φ ∨ 〈−〉Y.

Here we have a pre-fixed point ofφ ∨ 〈−〉Y ; the only canonical such is the least, and if a state satisfies∃Fφ,
then it surely satisfies any solutionY ′ of the equation. Hence we want the least pre-fixed point, which is also
the least fixed point,µY.φ ∨ 〈−〉Y .

Finally, we observe that since we want the fixed points, we may replace the implications by equalities in
the modal equations above, and get the same answers. It is therefore usual to cast modal fixpoint logics in
terms of equations, rather than of implications.

3.2 Approximating fixpoints andµ as ‘finitely’

The other key idea is that of approximants and unfolding. The standard theory tells us that iff is a monotonic
function on a lattice, we can construct the least fixed point off by applyingf repeatedly on the bottom element
⊥ of the lattice to form an increasing chain, whose limit is the fixed point. The length of the iteration is in
general transfinite, but is bounded at worst by the cardinal after cardinality of the lattice, and in the special

1 The mapping can be either given directly (inductively) or indirectly as the set{s ∈ S : s |= Φ}.
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case of a powerset lattice℘S, by the cardinal after the cardinality ofS. So if f is monotonic on℘S, we have
the increasing chain∅ ⊆ f(∅) ⊆ f2(∅) ⊆ . . . ⊆ fα(∅) . . . and the least fixed point is the limit of this chain

µf =
⋃
α<κ

fα(∅)

and similarly as there is the anti-chain,S ⊇ f(S) ⊇ f2(S) ⊇ . . . ⊇ fα(S) . . .,

νf =
⋂
α<κ

fα(S)

—or in terms of a infinitary logic,µZ.φ(Z) =
∨

α<κ φ
α(⊥)—whereκ is at worst|S|+ 1 for finite S, orℵ1

for countableS (andνZ.φ(Z) =
∧

α<κ φ
α(>)). So for a minimal fixpointµZ.φ(Z), if a states satisfies the

fixpoint, it satisfies some approximant, say for convenience theβ + 1 th so thats |= φβ+1(⊥). Now if we
unfold this formula once, we gets |= φ(φβ(⊥)). That is, the fact thats satisfies the fixpoint depends, viaφ, on
the fact that other states satisfy the fixpointat smaller approximants thans does. So if one follows a chain of
dependencies, the chain terminates. This is the strict meaning behind the slogan “µ means ‘finite looping’ ”,
which, with a little refinement, is sufficient to understandLµ.

On the other hand, for a maximal fixpointνZ.φ(Z), there is no such decreasing chain:s |= νZ.φ(Z)
iff s |= φ(νZ.φ(Z)), and we may loop for ever, as in the processP

def= a.P , which repeatedly does ana
action, and so satisfiesνZ.〈a〉Z. (However, if a statefails a maximal fixpoint, then there is a descending chain
of failures.) Instead, we have the principle of fixpoint induction: if by assuming that a setS |= Z, we can
show thatS |= φ(Z), then we have shown thatS |= νZ.φ (compare the recursive formulation of∀Gφ in the
previous section).

So in summary, one may understand fixpoints by the slogan ‘ν means looping, andµmeans finite looping’.
This slogan provides an alternative means of explaining why a minimal fixpoint is required in the translation
of ∃Fφ. This formula means that there is a path on whichφ eventually holds: that is, on the chosen path,φ
holds within finite time. Hence the ‘equation’Y = φ ∨ 〈−〉Y must only be applied a finite number of times,
and so by the slogan we should use a minimal fixpoint.

In the case of formulae with alternating fixpoints (which we shall examine a little later), the slogan remains
valid, but requires a little more care in application. It is essential to almost all proofs aboutLµ: the notion of
‘well-founded premodel’ with which Streett and Emerson [64] proved the finite model property, is an example
of the slogan; so are the tableau model-checking approaches of Stirling and Walker [62], and Bradfield and
Stirling [12].

3.3 Syntax ofLµ

Let Var be an (infinite) set ofvariable names, typically indicated byZ, Y, . . .; let Prop be a set ofatomic
propositions, typically indicated byP,Q, . . .; and letL be a set oflabels, typically indicated bya, b, . . .. The
set ofLµ formulae (with respect toVar,Prop,L) is defined in parsimonious form as follows:

• P is a formula.

• Z is a formula.

• If φ1 andφ2 are formulae, so isφ1 ∧ φ2.

• If φ is a formula, so is[a]φ.

• If φ is a formula, so is¬φ.

• If φ is a formula, thenνZ.φ is a formula, provided that every free occurrence ofZ in φ occurs positively,
i.e. within the scope of an even number of negations. (The notions of free and bound variables are as usual,
whereν is the only binding operator.)

If a formula is written asφ(Z), it is to be understood that the subsequent writing ofφ(ψ) meansφ with ψ
substituted for all free occurrences ofZ. There is no suggestion thatZ is the only free variable ofφ.
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The positivity requirement on the fixpoint operator is a syntactic means of ensuring thatφ(Z) denotes a
functional monotonic inZ, and so has unique minimal and maximal fixpoint. It is usually more convenient to
introduce derived operators defined by de Morgan duality, and work in positive form:

• φ1 ∨ φ2 means¬(¬φ1 ∧ ¬φ2).
• 〈a〉φ means¬[a]¬φ.

• µZ.φ(Z) means¬νZ.¬φ(¬Z).

Note the triple use of negation inµ, which is required to maintain the positivity. A formula is said to be in
positive formif it is written with the derived operators so that¬ only occurs applied to atomic propositions. It
is in positive normal formif in addition all bound variables are distinct (and different from free variables). Any
formula can be put into positive normal form by use of de Morgan laws andα-conversion. So we shall often
assume positive normal form, and when doing structural induction on formulae will often take the derived
operators as primitives.

For the concrete syntax, we shall assume that modal operators have higher precedence than boolean, and
that fixpoint operators have lowest precedence, so that the scope of a fixpoint extends as far to the right as
possible.

There are a few extensions to the syntax which are convenient in presenting examples, and in practice. The
most useful is to allow modalities to refer not just to single actions, but to sets of actions. The most useful set
is ‘all actions excepta’. So:

• s |= [K]φ iff ∀a ∈ K.s |= [a]φ, and[a, b, . . .]φ is short for[{a, b, . . .}]φ.

• [−K]φ means[L −K]φ, and set braces may be omitted.

Thus[−]φ means just[L]φ. 2

3.4 Semantics ofLµ

An Lµ structureT (over Prop,L) is a labelled transition system, namely a setS of states and a transition
relation→ ⊆ S×L×S (as usual we writes

a−→ t), together with an interpretationVProp: Prop → ℘S for
the atomic propositions.

Given a structureT and an interpretationV: Var → ℘S of the variables, the set‖φ‖T
V of states satisfying

a formulaφ is defined as follows:

‖P‖T
V = VProp(P )

‖Z‖T
V = V(Z)

‖¬φ‖T
V = S− ‖φ‖T

V

‖φ1 ∧ φ2‖T
V = ‖φ1‖T

V ∩ ‖φ2‖T
V

‖[a]φ‖T
V = { s | ∀t.s a−→ t⇒ t ∈ ‖φ‖T

V }

‖νZ.φ‖T
V =

⋃
{S ⊆ S | S ⊆ ‖φ‖T

V[Z:=S]}

whereV[Z := S] is the valuation which mapsZ to S and otherwise agrees withV. If we are working in
positive normal form, we may add definitions for the derived operators by duality:

‖φ1 ∨ φ2‖T
V = ‖φ1‖T

V ∪ ‖φ2‖T
V

‖〈a〉φ‖T
V = { s | ∃t.s a−→ t ∧ t ∈ ‖φ‖T

V }

‖µZ.φ‖T
V =

⋂
{S ⊆ S | S ⊇ ‖φ‖T

V[Z:=S]}

2 Beware that many authors use ‘[ ]φ’ to mean ‘[L]φ’, rather than the (vacuous) ‘[∅]φ’ that it means in our notation.
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We dropT andV whenever possible; and writes |= φ for s ∈ ‖φ‖.
We have discussed informally the importance of approximants; let us now define them. IfµZ.φ(Z) is a

formula, then for an ordinalα, let µZα.φ andµZ<α.φ be formulae, with semantics given, with simultaneous
induction onα, by:

‖µZ<α.φ‖T
V =

⋃
β<α

‖µZβ.φ‖T
V

‖µZα.φ‖T
V = ‖φ‖T

V[Z:=‖µZ<α.φ‖T
V]

The approximants of a maximal fixpoint are defined dually:

‖νZ<α.φ‖T
V =

⋂
β<α

‖νZβ.φ‖T
V

‖νZα.φ‖T
V = ‖φ‖T

V[Z:=‖νZ<α.φ‖T
V]

Note thatµZ<0.φ ⇔ ⊥ andνZ<0.φ ⇔ >. By abuse of notation, we writeZα or φα to meanµ
νZ

α. φ; of
course this only makes sense when one knows which fixpoint and variable is meant.

We should remark here that most literature onLµ uses a slightly different definition, puttingµZ0.φ = ⊥,
µZα+1.φ = φ(µZα.φ), andµZλ.φ =

⋃
β<λ µZ

β .φ for limit λ—which in effect is writingα for our<α.
That notation is taken from set theory; its advantage is that a limit approximant is the limit of approximants.
Our notation is taken from more recent set theoretic practice; its advantages are that it sometimes reduces the
number of trivial case distinctions in inductive proofs. However, the difference is not significant.

Sometimes, we are interested inrootedstructures(T, s0,VProp) for Lµ formulae that have a designated
initial states0: φ is true of such a structure ifs0 |= φ. We can, therefore, examine the set of all rooted structures
whereφ is true which allows comparison betweenLµ and other notations for classifying structures.

3.5 Examples

We have seen, both informally and in the formal semantics, the meaning of the fixpoint operators, and we have
seen some simple examples ofLµ translating CTL. We now consider some examples ofLµ formulae in their
own right, which express properties one might meet in practice.

There is a well-known ‘classification’ [42] of basic properties into safety and liveness. In terms ofLµ, it
is not unreasonable to say thatµ is liveness andν is safety. Consider first simpleν formulae. For example:

νZ.P ∧ [a]Z

is a relativized ‘always’ formula: ‘P is true along everya-path’. Slightly more complex is the relativized
‘while’ formula

νZ.Q ∨ (P ∧ [a]Z)

‘on everya-path,P holds whileQ fails’. Both formulae can be understood directly via the fixpoint construc-
tion, or via the idea of ‘ν as looping’: for example the second formula is true if eitherQ holds, or ifP holds
and wherever we go next (viaa), the formula is true, and. . ., and because the fixpoint is maximal, we can
repeat forever. So in particular, ifP is always true, andQ never holds, the formula is true.

µ formulae, in contrast, require something to happen, and thus are liveness properties. For example

µZ.P ∨ [a]Z

is ‘on all infinite lengtha-paths,P eventually holds’; and

µZ.Q ∨ (P ∧ 〈a〉Z)

is ‘on somea-path,P holds untilQ holds (andQ doeseventually hold)’. Again, these can be understood by
‘µ as finite looping’: in the second case, we are no longer allowed to repeat the unfolding forever, so we must
eventually ‘bottom out’ in theQ disjunct.
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This level of complexity suffices to translate CTL, since we haveµZ.Q ∨ (P ∧ 〈−〉Z) as a translation of
∃[P U Q], andµZ.Q ∨ (P ∧ [−]Z ∧ 〈−〉>) as a translation of∀[P U Q] (the conjunct〈−〉> ensures that
Q is actually reached, since[−]Z is true at deadlock states); and obviously we can nest formulae inside one
another, such as

νZ.(µY.P ∨ 〈−〉Y ) ∧ [−]Z

‘it is always possible thatP will hold’, or ∀G(∃FP ). Equally obviously, we can write formulae with no CTL
translation, such as

µZ.[a]⊥ ∨ 〈a〉〈a〉Z

which asserts the existence of a maximala-path of even length; a formula which is, incidentally, expressible
in PDL. This is, however, a fairly simple extension; much more interesting is the power one gets from mixing
fixpoints that depend on one another. Consider the formula

µY.νZ.(P ∧ [a]Y ) ∨ (¬P ∧ [a]Z).

This formula usually gives pause for thought, but it has a simple meaning, which can be seen by using the
slogans.µY. . . . is true if νZ. . . . is true if (P ∧ [a]Y ) ∨ (¬P ∧ [a]Z), which is true if eitherP holds and at
the next (a)-states we loop back toµY. . . ., or P fails, and at the next states we loop back toνZ. . . .. By the
slogan ‘µ means finitely’, we can only loop throughµY. . . . finitely many times on any path, and henceP is
true only finitely often on any path.

We shall see in a later section that this so-called alternation of fixpoint operators does indeed give ever
more expressive power as the number of alternations increases. It also appears to increase the complexity of
model-checking: all known algorithms are exponential in the alternation, but whether this is necessarily the
case is the main remaining open problem aboutLµ.

3.6 Fixpoint regeneration and the ‘fundamental semantic theorem’

In the informal description of the meaning of fixpoints, we used the idea of the dependency ofs atφ on t atψ.
We now make this precise. Assume a structureT, and a formulaφ. Suppose that we annotate the states with
sets of subformulae, such that the sets are locally consistent: that is,s is annotated with a conjunction iff it is
annotated with both conjuncts;s is annotated with a disjunction iff it is annotated with at least one disjunct;
if s is annotated with[a]ψ (resp.〈a〉ψ), then each (resp. at least one)a-successor is annotated withψ; if s is
annotated with a fixpoint or fixpoint variable, it is annotated with the body of the fixpoint. We call such an
annotated structure aquasi-model.

A choice functionf is a function which for every disjunctive subformulaψ1∨ψ2 and every state annotated
with ψ1 ∨ ψ2 chooses one disjunctf(s, ψ1 ∨ ψ2); and for every subformula〈a〉ψ and every states annotated
with 〈a〉ψ chooses onea-successort = f(s, 〈a〉ψ) annotated withψ.

A pre-modelis a quasi-model equipped with a choice function.
Given a pre-model with choice functionf , thedependenciesof a states that satisfies a subformulaψ are

defined thus:s@ψ1 ∧ ψ2 � s@ψi for i = 1, 2; s@[a]ψ � t@ψ for everyt such thats
a−→ t; s@ψ1 ∨ ψ2 �

s@f(s, ψ1 ∨ ψ2); s@〈a〉ψ � f(s, 〈a〉ψ)@ψ; s@µ
νZ.ψ � s@ψ; s@Z � s@ψ whereZ is bound byµ

νZ.ψ. A
trail is a maximal chain of dependencies.

If every trail has the property that the highest (i.e. with the outermost binding fixpoint) variable occurring
infinitely often is aν-variable, the pre-model iswell-founded. (Equivalently: in any trail, aµ-variable can only
occur finitely often unless a higher variable is encountered.)

The fundamental theorem on the semantics ofLµ can now be stated:

Theorem 3.1 A well-founded pre-model is a model: in a well-founded pre-model, ifs is annotated withψ,
then indeeds |= ψ.

The theorem in this form is due to Streett and Emerson in [64], from which the term ‘well-founded pre-model’
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is taken. Stirling and Walker [63] presented a tableau system for model-checking on finite structures, and
the soundness theorem for that system is essentially a finite version of the fundamental theorem using a more
relaxed notion of choice; the later infinite-state version of [12,7] is the fundamental theorem, again with a
slight relaxation on choice.

A converse is also true:

Theorem 3.2 If in some structures |= φ, then there is alocally consistentannotation of the structure and a
choice function which make the structure a well-founded pre-model.

The fundamental theorem, in its various guises, is the precise statement of the slogan ‘µ means finite
looping’. To explain why it is true, and to define the term ‘locally consistent’, we need to make a finer analysis
of approximants.

Assume a structureT, valuationV, and formulaφ in positive normal form. LetY1, . . . , Yn be theµ-
variables ofφ, in an order compatible with formula inclusion: that is, ifµYj .ψj is a subformula ofµYi.ψi,
theni ≤ j. If Yi is some inner fixpoint, then its denotation depends on the meaning of the fixpoints enclosing
it: for example, in the formulaµY1.〈a〉µY2.(P ∨ Y1) ∨ 〈b〉Y2, to calculate the inner fixpointµY2 we need to
know the denotation ofY1. We may ask: what is the least approximant ofY1 that could be plugged in to make
the formula true? Having fixed that, we can then ask what approximant ofY2 is required. This idea is the
notion ofsignature. A signature is a sequenceσ = α1, . . . , αn of ordinals, such that thei least fixpoint will
be interpreted by itsαith approximant (calculated relative to the outer approximants).

The definition and use of signatures inevitably involves some slightly irritating book-keeping, and they
appear in several forms in the literature. In [64], the Fischer–Ladner closure ofφ was used, rather than the
set of subformulae. The closure is defined by starting withφ and closing under the operations of taking the
immediate components of formulae with boolean or modal top-level connectives, together with the rule that if
µ
νZ.ψ(Z) ∈ cl(φ), thenψ(µ

νZ.ψ) ∈ cl(φ). The signatures were defined by syntactically unfolding fixpoints,
rather than by semantic approximants. In [63] and following work, a notion ofconstantwas used, which
allows some of the book-keeping to be moved into the logic. Although all the notions and proofs using them
are interconvertible, the ‘constant’ variant is perhaps easier to follow, and has the advantage that it adapts easily
to the modal equation system presentation ofLµ, which we shall see below. Indeed, it arises more naturally
from that system.

Add to the language a countable set ofconstantsU, V, . . .. Constants will be defined to stand for max-
imal fixpoints or approximants of minimal fixpoints. Specifically, given a formulaφ, let Y1, . . . , Yn be
the µ-variables as above, letZ1, . . . , Zm be theν-variables, letσ = α1, . . . , αn be a signature, and let
U1, . . . , Un, V1, . . . , Vm be constants, which will be associated with the corresponding variables. They are
given semantics thus: ifYi is bound byµYi.ψi, then‖Ui‖σ is ‖µY αi

i .ψ′
i‖σ, whereψ′

i is obtained fromψi by
substituting the corresponding constants for the free fixpoint variables ofµYi.ψi. If Zi is bound byνZi.ψi, its
semantics is‖νZi.ψ

′
i‖σ. Given an arbitrary subformulaψ of φ, we say a states satisfiesψ with signatureσ,

written s |=σ ψ, if s ∈ ‖ψ′‖σ, whereψ′ is ψ with its free fixpoint variables substituted by the corresponding
constants.

Order signatures lexicographically. Now, given a pre-model forφ, extend the annotations so that each
subformula ats is accompanied by a signature – writes@ψ[σ]. Such an extended annotation is said to be
locally consistent if the signature is unchanged or decreases by passing through boolean, modal, orν-variable
dependencies, and when passing throughs@Yi it strictly decreases in theith component and is unchanged in
the1, . . . , i− 1’th components.

It can now be shown, by a slightly delicate but not too difficult induction onψ andσ, that if s@ψ[σ], then
s |=σ ψ. The proof proceeds by contradiction: suppose thats@ψ[σ] ands 6|=σ ψ. If ψ is ψ1 ∨ ψ2 (ψ1 ∧ ψ2)
then for somei ∈ {1, 2}, s@ψ1[σ] ands 6|=σ ψi. If ψ is [a]ψ′ (〈a〉ψ′) then for somes′, s

a−→ s′, s′@ψ′[σ]
ands′ 6|=σ ψ

′. If ψ is a least fixpoint variableYi, then we pass through the unfolding rule tos@ψi[σ′] where
σ′ < σ ands 6|=σ′ ψi. (Hence we can only pass through least fixpoints finitely often.) The key case is whenψ
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is a greatest fixpoint variableZi. In this case, the hypothesis is thats@Zi[σ] ands 6|=σ Zi. Thens fails some
approximantZβ

i (ands@Zβ
i [σ]); and then passing through the unfolding rule givess failsψβ′

i for β′ < β (and

s@ψβ′

i [σ]). Continuing to chase the falsehood down the pre-model, we eventually arrive at a state failing the
zero’th approximant of a greatest fixpoint formula, which is impossible.

Furthermore, given a well-founded pre-model, one can construct a locally consistent signature annotation—
essentially, theYi component ofσ in s@ψ[σ] is the maximum ‘number’ (in the transfinite sense) ofYi occur-
rences without meeting a higher variable in trails froms@ψ, and so on; the well-foundedness of the pre-model
guarantees that this is well-defined. This gives the fundamental theorem.

The converse is quite easy: given a model, annotate the states by the subformulae they satisfy; fors@ψ
assign the leastσ such thats |=σ ψ; and choose a choice function that always chooses the successor with least
signature. It is easy to show that this is a well-founded pre-model and signature assignment.

3.7 Modal equation systems

The presentation ofLµ so far is a traditional logical formulation. However, in several circumstances it can be
useful to think in terms of systems of recursive equations for the fixpoint variables, as follows.

A modal equation systemcomprises a sequenceB0; . . . ;Bn of blocks; eachBi may be aµ-block(we write

Bµ
i ) or aν-block(we writeBν

i ). Each blockBµ/ν
i is a sequence of equationsXi0

µ/ν
= φi0, . . . , Xiki

µ/ν
= φiki

,
where eachφij is a modal formula which may contain any of the variablesXi′j′ positively.

Thus each blockBi defines a functional on vectors(Si0, . . . , Siki
) ∈ (℘S)ki . This functional is relative

to valuations of the variables in earlier blocks, and refers to the solutions of later blocks. IfBµ
i , then take the

least fixpoint (in the componentwise ordering) of this functional, and ifBν
i , take the greatest. Conventionally,

the solution of the entire equation system is taken to be the solution for the first variableX00.
There is an obvious transformations fromLµ to modal equation systems: for example,µX.P ∨ νY.[a]Y ∧

[b]X translates to

X00
µ
= P ∨X10 ; X10

ν= [a]X10 ∧ [b]X00.

Similarly, there is a reasonably obvious reverse transformation: for example, the equation system

X00
µ
= 〈a〉X10 ∨ [b]X10 ; X10

ν= P ∧ [a](X00 ∨X10)

translates toµX.〈a〉(νY.P ∧ [a](X ∨ Y )) ∨ [b](νY.P ∧ [a](X ∨ Y )). These translations, known from finite
model theory, show that modal equation systems andLµ are equi-expressive. Note that in the second example,
the formula duplicates the second equation: by extending such examples, one can see that the translation
from equation systems to formulae may introduce an exponential blow-up. However, this blow-up results in
formulae with many identical sub-formulae, which can in any case be optimized away during model-checking,
and in general problems in modal equation systems are of the same complexity as inLµ.

A block in a modal equation system is to be understood as asimultaneousfixpoint. Lµ could be di-
rectly presented with simultaneous fixed points: for instance,s |= µZ1 . . . Zn.(φ1, . . . , φn) iff s ∈ S1 where
(S1, . . . , Sn) =

⋂
{(S′1, . . . , S′n) | S′j ⊇ ‖φj‖T

V[Z1:=S′
1,...,Zn:=S′

n]}.
One of the main applications of modal equation systems is in the development of fast model-checking

algorithms: modal equation systems can be easily translated toboolean equation systems(defined as above,
but with boolean variables and just propositional equations) by having one boolean variable for each (modal
variable, state) pair. Then graph-theoretic or matrix-theoretic techniques can be employed to solve the boolean
equation systems. For more on this topic, see [46].

4 Expressive power

As we noted earlier in this article, there are many temporal logics used in practice, some of which are also
historical precursors toLµ. We said that most of them could be seen as fragments ofLµ. In this section we
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consider questions of expressivity and related topics, and start by showing how a number of other logics can
be translated intoLµ.

4.1 CTL and friends as fragments ofLµ

PDL can be easily translated intoLµ by unpacking the modal operators〈α〉: 〈α ∪ β〉ψ = 〈α〉ψ ∨ 〈β〉ψ,
〈α;β〉ψ = 〈α〉〈β〉ψ and〈α*〉ψ = µZ.ψ ∨ 〈α〉Z. The logic CTL is one of the simplest temporal logics, and
its translation is also simple. Recall the syntax and semantics of CTL from 2.2. The two basic operators are
∀[φU ψ] and∃[φU ψ]. Assuming that there are no deadlocked states, these can be simply translated as:

µZ.ψ ∨ [−]φ and µZ.ψ ∨ 〈−〉φ

with the proof of the equivalence being a straightforward application of the semantics. For both PDL and CTL,
only a fragment ofLµ is necessary where there is no essential alternation of fixpoints (as described in 7).

A much less trivial case is the logic CTL*. CTL* is the logic obtained by removing the syntactic constraint
of CTL that requires everyU to be immediately quantified by∀ or ∃, so that in CTL* one can write formulae
such as∀[(φUψ)∨¬(φ′Uψ′)]. Consequently, not all CTL* formulae have meanings purely in terms of states,
and the question of translation into a purely state-based logic likeLµ becomes problematic. However, one
can ask the question, is every state formula of CTL* (that is, boolean combinations of atoms and quantified
formulae) equivalent to anLµ formula? The answer is ‘yes’, but it is a harder problem. Wolper, in an
unpublished note from the early 1980s, noted that state formulas of CTL* can be translated via automata
theory into PDL over a single label with looping (which, in turn, is directly translatable intoLµ). The first
explicit translation was given by Dam [17], but the translation is very difficult, and gives a doubly exponential
blowup in the formula size. The latter means that the translation is of no use for model-checking, as existing
CTL* algorithms are much faster than a double exponential blowup ofLµ model-checking. A few years later,
Bhat and Cleaveland [6] gave a single exponential translation into the equational variant ofLµ. Although still
quite complex, utilising a so-called Büchi tableau automaton as an intermediary, this translation is efficient
enough to give competitive model-checking of CTL* via translation.

4.2 Bisimulation and tree model property

Bisimulation or back-and-forth equivalence or zig-zag equivalence is the equivalence associated with modal
logic. In our setting, abisimulationbetween twoLµ structuresT1 andT2 over the same proposition setProp
and label setL is a relationR such that for all propositionsP , if P (s1) ands1Rs2, thenP (s2), and conversely;
and ifs1Rs2, ands1

a−→ s′1, then for somes′2, s2
a−→ s′2 ands′1Rs

′
2, and conversely. Two statess1 ands2 are

bisimilar if there is some bisimulationR such thats1Rs2.
Recall that HML is the fixpoint-free part ofLµ. The following is easily shown by structural induction on

formulae:

Theorem 4.1 If two states (in the same or different systems) are bisimilar, they satisfy the same HML formulae.

By an induction on approximants, it is also straightforward to extend this to

Theorem 4.2 If two states (in the same or different systems) are bisimilar, they satisfy the sameLµ formulae.

A system isimage-finiteif for all statess and labelsa, the set{ s′ | s a−→ s′ } is finite. The following
theorem holds:

Theorem 4.3 If two states in image-finite systems satisfy the same HML (orLµ) formulae, then they are
bisimilar.

To prove this, one observes that bisimulation itself is a maximal fixpoint, namely the maximal fixpoint of the
mapR 7→ { (s1, s2) | (s1

a−→ s′1 ⇒ ∃s′2.s2
a−→ s′2∧(s′1, s

′
2) ∈ R)∧(s2

a−→ s′2 ⇒ ∃s′1.s1
a−→ s′1∧(s′1, s

′
2) ∈
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R) } (ignoring the propositions, which can be dealt with by an additional clause); shows that in an image-finite
system the approximants to this fixpoint close atω; and then deduce that if two states are not bisimilar, there
is a finite modal formula distinguishing them. The latter theorem does not hold for general systems: there are
systems which satisfy the sameLµ formulae, but are not bisimilar. The following example is based on one
by Roope Kaivola. Letφ1, φ2, . . . be an enumeration of allLµ formulae over some finite label setL. Let Ti,
with initial statesi, be a finite model forφi, with all Ti disjoint. LetT0 be constructed by taking an initial
states0 and makings0

a−→ si for all i > 0. Let T′
0 beT0 with the addition of a transitions0

a−→ s0. T0 and
T′

0 are clearly not bisimilar, because inT′
0 it is possible to defer indefinitely the choice of whichTi to enter.

On the other hand, suppose thatψ is a formula, and w.l.o.g. assume the topmost operator is a modality. If the
modality is[b], ψ is true of bothT0 andT′

0; if it is 〈b〉, ψ is false of both; ifψ is 〈a〉ψ′, thenψ is false at both
T0 andT′

0 iff ψ′ is unsatisfiable, and true at both otherwise; ifψ is [a]ψ′, thenψ is true at bothT0 andT′
0 iff

ψ′ is valid, and false at both otherwise.
A simple corollary of theorem 4.2 is thatLµ has thetree model property.

Proposition 4.4 If a formula has a model, it has a model that is a tree.

Just unravel the original model, thereby preserving bisimulation. This can be strengthened to thebounded
branching degreetree model property (just cut off all the branches that are not actually required by some
diamond subformula; this leaves at most (number of diamond subformulae) branches at each node).

4.3 Lµ and automata

Lµ is intimately related to automata theory, and the equivalence between various automata, particularly al-
ternating parity automata, as described in section 5, andLµ is a key technique in many results. The first
connexion betweenLµ and automata was tree automata, which we now briefly review.

Let us start with the notion of an automaton familiar from introductory computer science courses. A finite
automatonA = (Q,Σ, δ, q0, F ) consists of a finite set of statesQ, a finite alphabetΣ, a transition function
δ, an initial stateq0 ∈ Q and an acceptance conditionF . Classical nondeterministic automata recognise
languages, subsets ofΣ*, where the transition functionδ : Q× Σ → ℘Q. Given a wordw = a0 . . . an ∈ Σ*,
a run of A onw is a sequence of statesq0 . . . qn that traversesw, soqi+1 ∈ δ(qi, ai+1). The run isaccepting
if the sequenceq0 . . . qn obeysF : classically,F ⊆ Q andq0 . . . qn is accepting if the last stateqn ∈ F . There
may be many different runs ofA onw, some accepting the others rejecting, or no runs at all. The language
recognisedby A is the set of words for which there is at least one accepting run. A simple extension is to
allow recognition of infinite length words. A run ofA onw = a1 . . . ai . . . is an infinite sequence of states
π = q0 . . . qi . . . that travels overw, soqi+1 ∈ δ(qi, ai+1) and it is accepting if it obeys the conditionF . Let
inf(π) ⊆ Q contain exactly the states that occur infinitely often inπ. Classically,F ⊆ Q andπ is accepting if
inf(π) ∩ F 6= ∅ which is the B̈uchi acceptance condition.

Büchi automata are an alternative notation for characterizing infinite runs of systems. AssumeProp is a
finite set. The alphabetΣ = ℘Prop. If π = s0

a1−→ s1
a2−→ . . . is an infinite run, thenπ |= A if the automaton

accepts the wordProp(s0) Prop(s1) . . . whereProp(si) is the subset ofProp that is true atsi. For example,
if Prop = {P}, Q = {p, q}, δ(p, {P}) = {q}, δ(p, ∅) = {p}, δ(q, {P}) = {q} andδ(q, ∅) = {q}, q0 = p
andF = {q}, then this automaton is equivalent to the temporal formulaFP . (In fact, Büchi automata coincide
with the linear-timeµ-calculuswhere fixpoints are added to simple next time temporal logic that has the sole
modality©.)

When formulae are equivalent to automata, satisfiability checking reduces to thenon-emptinessproblem
for the automata: that is, whether the automaton accepts something. IfA is a Büchi automaton, then it is
non-empty if there is a transition pathq0 −→* q ∈ F and a cycleq −→* q (equivalent to an eventually cyclic
model).

The notion of bounded branchingtree automatonextends the definition of automaton to acceptn-branching
infinite trees whose nodes are labelled with elements ofΣ. Previously, statesq′ belonged toδ(q, a); now it is
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tuples(q′1, . . . , q
′
n) that belong toδ(q, a). A tree automaton traverses the tree, descending from a node to alln-

child nodes, so the automaton splits itself inton copies, and proceeds independently. A run of the automaton is
then ann-branching infinite tree labelled with states of the automaton. A run is accepting ifeverypath through
this tree satisfies the acceptance conditionF . In the case of Rabin acceptanceF = {(G1, R1), . . . (Gk, Rk)}
where eachGi, Ri ⊆ Q andπ obeysF if there is aj such thatinf(π)∩Gj 6= ∅ andinf(π)∩Rj = ∅. A variant
definition isparity acceptance first introduced (not under that name) by Mostowski [52] whereF maps each
stateq of the automaton to apriority F (q) ∈ N. We say that a path satisfiesF if the least priority seen infinitely
often is even. It is not hard to see that a parity condition is a special case of a Rabin condition; it is also true,
though somewhat trickier, that a Rabin automaton can be translated to an equivalent parity automaton.

AssumingProp is finite, tree automata characterize rootedn-branching infinite tree models(T, s0,VProp)
for Lµ formulae wheres0 is the root of the tree:(T, s0,VProp) |= A if A accepts the behaviour treeT′ that
replaces each states ∈ T with Prop(s). For example, letProp = {P}, Q = {p, q}, δ(p, {P}) = {(p, p)},
δ(p, ∅) = {(q, q)}, δ(q, {P}) = {(p, p)} andδ(q, ∅) = {(q, q)} andq0 = p. This automatonA with parity
acceptanceF (p) = 1 andF (q) = 2 is equivalent toµY.νZ.(P ∧ [a]Y )∨ (¬P ∧ [a]Z) over infinite binary-tree
models: the fixed pointµY is ‘coded’ byp andνZ is coded by q.

The use of priorities looks very much like the definition of well-founded pre-model from section 3.6, if we
assign priorities to the subformulae of anLµ formula in such a way that the priority of a fixpoint formula is
lower than any of its subformulae (and the priority of a least fixpoint is odd). Indeed, it is essentially the same
thing. Tree automata andLµ are equivalent [64]:

Theorem 4.5 A family ofn-branching infinite tree models is defined by some tree automaton iff it is the set
of n-branching infinite tree models of some correspondingLµ formula. Consequently, determining whether a
system satisfies anLµ formula is equivalent to determining whether its behaviour trees are accepted by the
corresponding automaton.

Decidability of satisfiability ofLµ formulae reduces to the non-emptiness problem for tree automata. This
problem is more difficult than for B̈uchi automata. However, there is an exponential decision procedure that is
inductive in theindexof the automaton (which is the number of parities or pairs inF , in the case of a Rabin
automaton).

This illustrates the potency of the automata-theoretic approach to temporal logic that has become popular
in recent years. Satisfiability of formulae is reduced to the non-emptiness problem for a class of automata.
There is also the virtue that automata sustain combinatorial transformations, such as determinization, and
closure operations, such as intersection, that are not in the logical repertoire. Occasionally, logics are easier:
one of the hardest automata-theoretic proofs is that tree automata are closed under complementation. We shall
see more of automata in later sections.

4.4 Lµ and games

Lµ is also intimately related to games, as are automata. We can view the relationship at different levels.
The fundamental semantic theorem can be presented as a simple two playermodel-checkinggame. Assume

a rooted model(T, s0,V) and formulaφ0 in positive normal form. The gameG(s0, φ0) is defined on anarena
that is a set of pairs(s, ψ) wheres is a state ofT andψ is a subformula ofφ0. The initial position is(s0, φ0).
There are two players, whom we will call simply∀ and∃. (Other popular names include Player II/Player I,
Abelard/Eloise, Opponent/Proponent, Refuter/Verifier.)∀ is responsible for making a move from a position
(s, φ∧ ψ), the available choices are{(s, φ), (s, ψ)}, and from a position(s, [a]φ) whose available choices are
{(t, φ) | s a−→ t ∈ T}. Similarly,∃ is responsible for(s, φ ∨ ψ) and(s, 〈a〉φ). There are final positions(s, ψ)
whereψ ∈ {P,¬P, [a]φ, 〈a〉φ}: (s, [a]ψ) and(s, 〈a〉φ) are only final if there is no statet such thats

a−→ t. A
final position(s, ψ) is winning for∃ if s |= ψ; otherwise it is winning for∀.

A play ofG(s0, φ0) is a finite or infinite sequence of positions starting with(s0, φ0). ∃ wins a finite play if
the final position is winning for∃. She wins an infinite play if the outermost fixed point variableY that occurs
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infinitely often in the play is aν-variable. Otherwise,∀ wins. There may be many different plays;∃ may win
some and lose others. Astrategyfor a player is a function which, given a play so far and a position where
there is a choice, returns a specific choice and so tells the player how to move. Ahistory-free(positional or
memoryless) strategy only depends on the current position and not on the previous history of the play: for∃
it is just a choice function. Awinning strategyis one which, if followed, guarantees that the player will win
all plays of the game. Now the fundamental semantic theorems, theorems 3.1 and 3.2, are equivalent to the
following.

Theorem 4.6 s |= φ iff ∃ has a history-free winning strategy for the gameG(s, φ).

The model checking game on finite structures can be abstracted into a simple two player graph game, called
the parity game. The state setQ of the graph are the positions and are partitioned intoQ∀ andQ∃. There is
an initial stateq0 ∈ Q. Edges decide possible next positions; for instance,∃ chooses a successor from a vertex
q ∈ Q∃ and to ensure play is always infinite winning positions have self-loops. The acceptance conditionF is
just given as a parity condition:F maps each stateq of the automaton to a priorityF (q) ∈ N and∃ wins an
infinite play if the least priority that occurs infinitely often is even. Themodel-checkingproblem forLµ over
finite structures, whethers0 |= φ0, is equivalent to solving the parity game (does∃ win q0 ?). Parity games
are determined (i.e. either∃ or ∀ has a winning strategy), and a winning strategy is history-free. However, the
exact complexity of solving a parity game is a significant open problem.

There is a more intimate connection betweenLµ and parity games. AnLµ formula, itself,is a parity game
as we shall see in section 5; alternating automata are games. Tree automata are games following Gurevich and
Harrington [30]. Consider a run of a tree automaton on ann-branching infinite tree whose nodes are labelled
with elements ofΣ. It starts at the root of the tree with the initial automaton state. If the automaton is in state
q examining a nodev of the tree labelled witha ∈ Σ then∃ chooses a tuple(q′1, . . . , q

′
n) that belong toδ(q, a).

Now ∀ chooses a directioni : 1 ≤ i ≤ n so the next position is theith child ofv in stateq′i. The play continues
forever. The play is won by∃ if it obeys the acceptance condition. Clearly,∃ has a winning strategy, iff the
automaton accepts the tree. (If the acceptance condition is a Rabin condition, this strategy is not history-free;
however, it only depends on the ‘latest appearance record’, an ordering of the automaton states capturing the
last time each automaton state occurred in the current play.)

5 Decidability of satisfiability

As with any logic, a key question is decidability of satisfiability, that is, deciding whether a closed formula has
a model. A connected property is thefinite model property (fmp), that is, if a formula has a model, then it has
a finite model. If a logic has the fmp (and the size of the finite model for a formula is effectively bounded),
then decidability follows, since one can just check all models up to the size bound.Lµ, as we have seen, has
the tree model property.

A direct approach to proving decidability of satisfiability is to employ semantic tableaux, to begin with an
initial closed formulaφ in positive normal form and then to build a tree model for it whose states are labelled
with locally consistent subsets of the Fisher-Ladner closure ofφ, cl(φ): for instance, ifψ ∧ γ ∈ s thenψ ∈ s
andγ ∈ s. Children of a nodes are generated using modal successor principles. For each〈a〉ψ ∈ s create
a child nodet such thats

a−→ t andψ ∈ t: in turn, s
a−→ t when [a]ψ ∈ s impliesψ ∈ t andψ ∈ t and

〈a〉ψ ∈ cl(φ) implies〈a〉ψ ∈ s. This guarantees that the tree has bounded branching degree becausecl(φ) is
finite. Fixed point formulae are “unfolded”:µνX.ψ ∈ s impliesψ(µ

νX.ψ) ∈ s. The valuationVProp is then
defined:s ∈ VProp(P ) if and only ifP ∈ s.

If φ is satisfiable then the construction will generate a finite tree model or an infinite tree that is a pre-model.
In the latter case, the problem is how to ensure that it is well-founded. So far, there is no distinction between
least and greatest fixed points. As mentioned, an important semantic principle is Park’s fixed point induction
rule, if |= φ(ψ) ⇒ ψ then|= µX.φ(X) ⇒ ψ: it follows directly from the semantics becauseµ is indeed the
least pre-fixed point. A question is how to use this semantic principle to guide the tableau construction in such

16



a way that if the starting formula is satisfiable then a model is generable. The following proposition is useful.

Proposition 5.1 If γ ∧ µX.ψ(X) is satisfiable andX is not free inγ, thenγ ∧ ψ(µX.¬γ ∧ ψ) is satisfiable.

Proof. Assume thatγ∧µX.ψ(X) is satisfiable but|= ψ(µX.¬γ∧ψ) ⇒ ¬γ. Therefore,|= ψ(µX.¬γ∧ψ) ⇒
¬γ ∧ ψ(µX.¬γ ∧ ψ). Using the fact that|= φ′(µX.φ′(X)) ⇒ µX.φ′(X) and propositional reasoning,
|= ψ(µX.¬γ ∧ ψ) ⇒ µX.¬γ ∧ ψ. By fixed point induction,|= µX.ψ ⇒ µX.¬γ ∧ ψ and consequently
|= µX.ψ ⇒ ¬γ which is a contradiction.

5.1 The aconjunctive fragment

The tableau approach was employed by Kozen [35] to decide satisfiability. Unfortunately, he could only
prove the result for a sublogic ofLµ, when the starting formulaφ is aconjunctive: that is, if µX.ψ is a
subformula ofφ andψ1 ∧ ψ2 ∈ cl(µX.ψ) then for at most oneψi is it the case thatµX.ψ ∈ cl(ψi). For
instance,νZ.µX.([a]X ∨ 〈b〉Z) ∧ 〈a〉Z is aconjunctive: the subformulaγ = µX.([a]X ∨ 〈b〉Z) ∧ 〈a〉Z has
one conjunction in its closure([a]γ ∨ 〈b〉Z) ∧ 〈a〉Z andγ is only in the closure of the first conjunct. In
contrast,γ = µX.νZ.([a]X ∨ 〈b〉Z) ∧ 〈a〉Z fails to be aconjunctive:γ is in the closure of both conjuncts
([a]γ∨〈b〉(νZ.[a]γ∧〈a〉Z))∧〈a〉(νZ.[a]γ∧〈a〉Z). Aconjunctivity restricts how a formulaµX.ψ ∈ cl(φ) can
regenerate itself in the tableau construction: there can only be a linear pattern of regeneration (as opposed to
the more general branching pattern for fullLµ). In the case ofγ = νZ.µX.([a]X ∨〈b〉Z)∧〈a〉Z, the relevant
formulaγ′ = µX.([a]X∨〈b〉γ)∧〈a〉γ can only regenerate itself through the the subformula[a]X: so, multiple
regenerations ofγ′ happen only as part of a linear sequence. On the other hand,γ = µX.νZ.([a]X ∨ 〈b〉Z) ∧
〈a〉Z can regenerate itself through both subformulae([a]X ∨ 〈b〉Z) and〈a〉Z: so, multiple regenerations ofγ
form a tree.

Given the aconjunctive restriction, one can guide the construction of the tree model by applying proposi-
tion 5.1 toµX.ψ ∈ s: as it is unfolded its interpretation is strengthened toψ(µX.¬s∧ψ) wheres abbreviates
the conjunction of all formulas ins. The strengthening interpretation is extended asµX.ψ regenerates itself in
descendent statest of s, so that an unfolding int is re-interpreted asψ(µX.¬s∧ . . .∧¬t∧ψ) thereby ensuring
that a descendent state within whichµX.ψ is regenerated cannot have the same labelling as the ascendent state
(and because the starting formula is aconjunctive this will guarantee a well-founded pre-model). To do this,
one needs a careful ordering on fixed point subformulae (in terms of which are more outermost) to ensure that
the set of labellings remains finite. Kozen showed that the decision procedure for this fragment (that contains
PDL and CTL) works in exponential time and at the same time the proof delivers the finite model property. In
fact, the construction works for a more generous fragment of the logic, called theweakaconjunctive fragment
in [71]. One only needs to guarantee that there is a linear pattern of regeneration of least fixed point subfor-
mulae relative to each individual branch in the tree model. The formulaγ = µX.νZ.〈a〉X ∧ 〈a〉Z belongs to
this more generous fragment because the regenerations ofγ through the subformulae〈a〉X and〈a〉Z happen
in different branches: the formulaµX.νZ.([a]X ∨ 〈b〉Z) ∧ 〈a〉Z does not belong to it. In fact, every closed
formula ofLµ is semantically equivalent to a weak aconjunctive formula (which follows from results below).
However, it is an open question whether the tableau technique can be made to work directly for all formulae.

5.2 Towards automata

The first decision procedure for fullLµ reduced the problem to SnS, the second-order theory ofn-successors,
[38]. The structure for SnS is the transition system (tree) with state space{0, . . . , n − 1}* and transition

relationsw
i−→ wi for eachi < n. Büchi showed that the monadic second-order (MSO) theory of S1S is

decidable [13]: besides first-order constructs, MSO has quantifiers over sets of states. S1S is a weak form of

arithmetic where, in this presentation, the numbern is 0n and
0−→ is the+1 function. Rabin extended B̈uchi’s

result by showing that the MSO theory of SnS is decidable for anyn > 0 [60]. Kozen and Parikh’s proof of
decidability of satisfiability for fullLµ uses the tree model property with bounded branching degree. Given a
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formulaφ the maximum required branching degreen can be calculated fromcl(φ). The formulaφ can then be
translated almost directly into SnS by examining its semantics: for instance,‖νX.φ‖V = ∃S.S ⊆ ‖φ‖V[X:=S]

and‖X‖V = V(X). Elements ofProp are treated as variables (and are existentially quantified over). Labels
in diamond modalities are judiciously mapped to “directions”i < n and labels in box modalities to sets of
directions. For example,νX.〈a〉(X ∧ ¬P ) ∧ 〈a〉(X ∧ P ) is translatable into the S2S formula

∃P.∃S.∀x.∃y.∃z.(x ∈ S ⇒ x
1−→ y ∧ y ∈ S ∧ y 6∈ P ) ∧ (x ∈ S ⇒ x

2−→ z ∧ z ∈ S ∧ z ∈ P )

The formulaφ is satisfiable if and only if its translation is true in SnS: for instance, the S2S formula above is
true. The key feature in the MSO decidability proofs is that in a formula∃X.φ, quantification can be restricted
to “regular” sets of states which leads to quantifier elimination when the normal form is a nondeterministic
finite state automaton. In the case of S1S it is a Büchi word automaton and in the more general setting of SnS
it is a Rabin tree automaton: these automata are defined in section 4.3. The automaton normal form for∀X.φ,
that is¬∃X¬φ, involves an exponential increase in size because of complementation. Consequently, the
decision procedure for SnS,n > 0, is (and must be) non-elementary. BecauseµX1.νX2. . . . µXm.νXm+1.ψ
is translated into the MSO formula∀S1.∃S2 . . .∀Sm.∃Sm+1.ψ

′, Kozen and Parikh’s decision procedure for
Lµ is also non-elementary.

MSO formulae with second-order quantification, unlike fixed point formulae, are expressively succinct. A
direct translation ofLµ formulae into finite state automata, without intervening MSO formulae, could lead to a
more efficient decision procedure. With this technique Streett provided an elementary time decision procedure
for PDL with looping and converse [65]. With Emerson he employed the same technique forLµ and obtained
a decision procedure for satisfiability and a proof of the finite model property at once [64]. The procedure is in
elementary time. The central ingredient (besides the tree model property) is the relationship betweenLµ and
Rabin automata, which is established using the fundamental semantic theorem. For, the constraint on fixpoint
regeneration and infinite repetition is expressible as a Rabin acceptance condition. Now we can construct an
automaton that accepts such bounded-branching tree models, by combining a finite-state automaton to check
the local consistency (that is, to check that the putative model is a pre-model), and a Rabin automaton to check
that the pre-model is well-founded. Thus the formula is satisfiable if this product automaton accepts some
tree. Now automata theory, see for instance [66], tells us that (a) this question is decidable (b) if such an
automaton accepts some tree, it accepts a regular tree, that is, one that is the unravelling of a finite system; this
gives the results. Later, Emerson and Jutla provided an exponential time decision procedure (which is optimal)
using an improved determinization construction and an improved tree automata emptiness test [22]: there is
an exponential (in the size of the formula) bound on the size of the model.

5.3 Alternating parity automata

There is a slight mismatch betweenLµ models and SnS models because of the fixed branching degree and
the explicit indexed successors. However, it is possible to define automata that can directly recogniseLµ
models by navigating through their transition graphs. We definealternating parity automatafor this purpose
following, for example, [40]. The only restriction is that we assume thatProp is a finite set (those propositions
that appear in a starting formulaφ). A rooted model for a closed formulaφ is a triple(T, s0,V).

Recall the notion of automatonA = (Q,Σ, δ, q0, F ) as defined in section 4.3. Now think of the transition
function of an automaton as a logical formula. For a word automaton, ifδ(q, a) = {q1, . . . , qm} then it is
the formulaq1 ∨ . . . ∨ qn. For a tree automaton ifδ(q, a) = {(q11, . . . , q1n), . . . , (qm

1 , . . . , q
m
n )} then it is

((1, q11) ∧ . . . ∧ (n, q1n)) ∨ . . . ∨ ((1, qm
1 ) ∧ . . . ∧ (n, qm

n )): here the element(i, q′) means create anith-child
with label q′. A word or tree is accepted if there exists an accepting run for that word or tree; hence, the
disjuncts. However, for a tree, every path through it must be accepting; hence the conjuncts. Inalternating
word automata, the transition function is given as an arbitrary boolean expression over states: for instance,
δ(q, a) = q1 ∧ (q2 ∨ q3). In alternating tree automata it is a boolean expression over directions and states: for
instance,((1, q1)∧(1, q2))∨(2, q3). Now the definition of a run becomes a tree in which, successor transitions
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obey the boolean formula. In particular, even for an alternating automaton on words, a run is a tree, and not
just a word. The acceptance criterion is as before, that every path of the run must be accepting. An alternating
automaton is just a game too where∀ is responsible for∧ choices and∃ for ∨ choices (as in section 4.4).

The idea now is to replace pairs(i, q′) with simple modal formulae. We definemodalautomata whose
transition functions appeal to a modal language (similar to modal equation systems). Formally, a modal au-
tomatonA = (Q,Σ, δ, q0, F ) whereQ is a finite set of states,Σ is the set℘Prop andF is the parity acceptance
condition. The transition functionδ : Q × Σ → B whereB is the following set of positive modal formulae
(with modal depth at most1).

• >,⊥ are inB

• If q ∈ Q anda ∈ L then〈a〉q and[a]q are inB

• If B1 andB2 are inB thenB1 ∨B2 andB1 ∧B2 are inB

The automaton traverses the modal model, starting ats0 and moving from a states to successor statest
such thats

a−→ t for somea ∈ L, according to the transition function. However, not every successor may be
included and some successors may be included multiple times: for instance, ifq is the current automaton state

for s andδ(q,Prop(s)) = 〈a〉p1 ∧ [c]p2
3 ands

a−→ s1, s
b−→ s2, s

c−→ s1 ands
c−→ s then the automaton

changes state top1 and moves tos1 in the model, changes top2 and also moves tos1 in the model and changes

to p2 and remains ats. As with tree automata, a run ofA on a model is a a labelled tree(N, i−→, L′) where

N ⊆ ω* that obeys the tree property that ifwi ∈ N thenw ∈ N andw
i−→ wi: a nodex ∈ N may have

infinitely many successorsxi ∈ N , as models have no bound on their branching degree. Unlike tree automata,
there is no requirement that complete branches should have infinite length.

In more detail, a run ofA on a modal model is a projection of an intermediate structure, a tree with

composite labels(N, i−→, L). The labellingL : N → S ×Q whereS is the state space of the model: for the
root of the tree,L(ε) = (s0, q0). The labels of a node and its successors have to obey the transition function.
First, given a states of the model letMs range over mixture subsets{(t, q′) | s a−→ t for somea andq′ ∈ Q}.
Next, we define when a subsetMs satisfies a modal formulaB, which we writeMs |= B.

Ms |= > Ms 6|= ⊥

Ms |= 〈a〉p iff ∃t.s a−→ t and(t, p) ∈Ms

Ms |= [a]p iff ∀t. if s
a−→ t then(t, p) ∈Ms

Ms |= B1 ∨B2 iff Ms |= B1 orMs |= B2

Ms |= B1 ∧B2 iff Ms |= B1 andMs |= B2

GivenA and a rooted model, one grows a labelled tree from the rootε with L(ε) = (s0, q0). If L(x) =
(s, q) andδ(q,Prop(s)) = B then there is a (possibly empty) setMs such thatMs |= B. A child of x is
produced for each element ofMs: that is,Ms = {L(xi) |xi ∈ N}. For example, ifL(x) = (s, q) and
δ(q,Prop(s)) = 〈a〉q1 ∧ [a]q2 ∧ 〈a〉q3 and in the models

a−→ si for all i ≥ 0 then a candidateMs is
{(s0, q1), (s1, q3), (s0, q2), . . . , (si, q2), . . .}: here there are infinitely many such candidates. The required run

is the projection of the tree to states inQ, the tree(N, i−→, L′) whose labellingL′(x) = q if L(x) = (s, q)
for somes. A run is acceptingif all (labellings of) infinite branches starting from the root obey the parity
acceptance conditionF .

Given a rooted model(T, s0,V), s0 |= A if there is an accepting run ofA on that model. The following is
relatively straightforward (and is reminiscent of translating to and from boolean equation systems).

Theorem 5.2 For each modal automaton there is an equivalent closed formula ofLµ, and for each closed

3 Prop(s) is the subset ofProp true ats.
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formula ofLµ there is an equivalent modal automaton.

5.4 Automaton normal form

We can now extract a semanticnormal formfor Lµ due to Walukiewicz [71,32]. IfΓ is a finite set of formulae,
(a)Γ abbreviates

∧
φ∈Γ〈a〉φ∧ [a]

∨
φ∈Γ φ. Every modal automaton is equivalent to arestrictedmodal automa-

ton. LetΣ = {a1, . . . , an}. The transition function is restricted: formulae ofB are disjunctions of conjuncts
of the form(a1)B1 ∧ . . . ∧ (an)Bn where eachBi ⊆ Q ∪ {>}. The proof of the following is far from trivial
and depends on the combinatorial features of automata, especially determinization.

Theorem 5.3 For each modal automaton there is an equivalent restricted modal automaton.

A formula is inautomaton normal form (anf)4 , if it belongs to the following sublogic, where

• P , ¬P andZ are anfs

• If φ1 andφ2 are anfs, so isφ1 ∨ φ2

• If φ is an anf, then so areνZ.φ, µZ.φ

• If eachΓi is a finite set of anfs andai 6= aj wheni 6= j andα+ is a finite set of atomic propositions and
their negations, then(a1)Γ1 ∧ . . . ∧ (an)Γn ∧ α+ is an anf

Anf formulae are the characteristic formulae for restricted automata. For instance, a clause{〈a〉p, 〈a〉q} with
respect to labelsa, b becomes the formula〈a〉p ∧ 〈a〉q ∧ [a](p ∨ q) ∧ [b]⊥.

Proposition 5.4 For each restricted automaton there is an equivalent anf formula.

Therefore, anfs are semantic normal forms forLµ. We can effectively construct the anf normal form
for a formulaφ in positive normal form. First, use Theorem 5.2 to build an equivalent modal automaton
Aφ for φ. Next, use Theorem 5.3 to transformAφ into an equivalent restricted automatonA+

φ . Finally, use

Proposition 5.4 to convertA+
φ into an equivalent anf formulaφ′.

An anf formula is weakly aconjunctive (although not necessarily aconjunctive). After simplification, the
anf normal form of the earlier formulaµX.νZ.([a]X∨〈b〉Z)∧〈a〉Z that is not aconjunctive isµX.νZ.(a){X}∨
((a){Z,>}∧(b){Z,>}). In fact, conjunction is even more constraining in anf formulae. Consider, the seman-
tic tableau construction for an anf formulaφ. The only time we need to apply∧ decomposition is just before the
application of modal successors: assume a states is labelled with the formula(a1)Γ1 ∧ . . . ∧ (an)Γn ∧ α+ ∈
cl(φ). At s it reduces to its components(a1)Γ1, . . . , (an)Γn, α

+. If α+ is consistent then modal children
s

ai−→ t are created: however, by the definition of(a) each modal successort is labelled with a single anf
formula in cl(φ). Therefore, as shown by Walukiewicz,φ is satisfiable iff all its fixed point subformulae
µX.ψ(X) are replaced withψ(⊥) and all subformulaeνX.ψ(X) are replaced withψ(>). To illustrate this,
assumeφ = µX.ψ is satisfiable. Consider a rooted model and a least ordinalo such thats0 |= µXo.ψ.
Consider its semantic tableau with initial states0 labelled withφ. If there is a descendent statet that is also
labelled withφ thent |= µXo′

.ψ with o′ < o which contradicts thato is least. Therefore, there is a model for
φ such that no descendent state is labelled withφ, which is, therefore, also a model forψ(⊥). Consequently,
satisfiability checking for an anf formula can be done in linear time [32]. To obtain the fmp for anfφ, replace
each subformulaeµX.ψ(X) with ψ(⊥) and build a semantic tableaux for it. For modal successors, if at state
s, νX.ψ ∈ Γ and(a)Γ ∈ s and some statet is on the path from the root tos andt is labelled withνX.ψ then
let s

a−→ t: in this way, a finite model forφ is constructed.

4 Walukiewicz terms them “disjunctive formulae”.
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6 Complete axiomatization

A related problem to decidability is the question of providing an axiomatization of the theory of the modal mu-
calculus. In his original paper, Kozen presented the axiomatization as an equational theory which is equivalent
to the following.

(i) axioms and rules for minimal multi-modal logic K

(ii) φ(µX.φ(X)) ⇒ µX.φ(X)

(iii)
φ(ψ) ⇒ ψ

µX.φ(X) ⇒ ψ

Axiom ii is the axiom for a least fixed point that its “unfolding” implies it and rule iii is Park’s fixed point
induction rule. The duals of this axiom and rule for greatest fixed points are;νX.φ(X) ⇒ φ(µX.φ(X)) and
if ψ ⇒ φ(ψ) thenψ ⇒ νX.φ(X).

However, despite the naturalness of this axiomatization, Kozen was unable to show that it was complete.
He was, however, able to show completeness for the aconjunctive fragment. In fact, a proof works forweak
aconjunctive formulae using the consistency version of proposition 5.1: ifγ ∧ µX.ψ(X) is consistent5 and
X is not free inγ, thenγ ∧ ψ(µX.¬γ ∧ ψ) is consistent. The proof is similar to the tableau construction
described in section 5.1. Given an initial consistent formula in positive normal form one builds a tree model:
the construction is guided by the proposition above as in the satisfiability proof.

Completeness for the full language remained open for more than a decade, until it was finally solved by
Walukiewicz in [71], who established that Kozen’s axiomatization is indeed complete. The proof is very
involved and, in effect, internalises the automata theoretic satisfiability proof described earlier. It utilises
automata normal form and weak aconjunctivity. It is more straightforward (as with satisifiability) to show
using tableaux that if an anf formula is consistent then it has a model. Much harder to prove is that every
(closed) formula is provably equivalent within the axiom system to an anf formula. Walukiewicz utilises
games on infinite tableaux to show this.

The following are valid fixpoint principles (which, by duality also are true forν).

µX.µY.φ(X,Y ) ⇐⇒ µX.φ(X,X) ⇐⇒ µY.µX.φ(X,Y )

Arnold and Niwinski call these “the golden lemma” ofµ-calculus [5]. Other interesting valid fixpoint prin-
ciples includeµX.φ(X) ⇒ νX.φ(X), by monotonicity, and the following, due to Niwinski, that generalises
that ‘almost always’ implies ‘infinitely often’.

µX.νY.φ(X,Y ) ⇒ νY.µX.φ(X,Y )

Deriving these principles deductively from Kozen’s complete axiom system is by no means easy (as opposed
to their derivations using the semantics).

7 Alternation

As we said earlier, the alternation of fixpoints is what givesLµ its expressive power, and also what appears to
generate the computation complexity of model-checking. In this section, we study alternation in more detail.
As we have said, the idea is to count alternations of minimal and maximal fixpoint operators, but to do so in
a way that only counts real dependency. The paradigm is ‘always eventually’ versus ‘infinitely often’: the
‘always eventually’ formula

νY.(µZ.P ∨ 〈a〉Z) ∧ 〈a〉Y

5 A formulaφ is consistent with respect to an axiom system ifφ ⇒ ⊥ is not derivable within the axiom system. Completeness of an
axiom system is equivalent to the statement that every consistent formula has a model (is satisfiable).
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is, using a straightforward model-checking algorithm, really no worse to compute than two disjoint fixpoints,
since the inner fixpoint can be computed once and for all, rather than separately on each outer approximant;
on the other hand, the ‘infinitely often’ formula

νY.µZ.(P ∨ 〈a〉Z) ∧ 〈a〉Y

really does need the full double induction on approximants.
The definition of Emerson and Lei takes care of this by observing that the ‘eventually’ subformula is a

closed subformula, and giving a definition that ignores closed subformulae when counting alternations. The
stronger notion of Niwínski, which also has the advantage of being robust under translation to modal equation
systems, also observes that, for example,µX.νY.[−]Y ∧ µZ.[−](X ∨ Z) although it looks like aµ/ν/µ
formula, is morally aµ/ν formula, since the inner fixpoint does not refer to the middle fixpoint.

The alternation depth referred to in the complexity of model-checking is a measure of alternation that
is symmetric inµ andν. It is possible to give algorithms that compute the alternation depth of a formula
[24,1,34], and this is how the notion was presented by Emerson and Lei. However, for our purposes it is
easier to start from a definition of classes for formula, formalizing the idea of ‘aµ/ν/µ formula’ etc.; such
a definition is analogous to the usual definition of quantifer alternation for predicate logic, an analogy which
will be exploited later. This was how Niwiński [53] presented the notion of alternation, and we follow his
presentation.

Assuming positive form, a formulaφ is said to be in the classesΣNµ
0 andΠNµ

0 iff it contains no fixpoint
operators. To form the classΣNµ

n+1 (resp.ΠNµ
n+1), takeΣNµ

n ∪ΠNµ
n , and close under the following rules:

(i) if φ1, φ2 ∈ ΣNµ
n+1 (resp.ΠNµ

n+1), thenφ1 ∨ φ2, φ1 ∧ φ2, 〈a〉φ1, [a]φ1 ∈ ΣNµ
n+1 (resp.ΠNµ

n+1);

(ii) if φ ∈ ΣNµ
n+1 (resp.ΠNµ

n+1), thenµZ.φ ∈ ΣNµ
n+1 (resp.νZ.φ ∈ ΠNµ

n+1);

(iii) if φ(Z), ψ ∈ ΣNµ
n+1 (resp.ΠNµ

n+1), thenφ(ψ) ∈ ΣNµ
n+1 (resp.ΠNµ

n+1), providedthat no free variable ofψ is
captured by a fixpoint operator inφ.

If we omit the last clause, we get the definition of ‘simple-minded’ alternationΣSµ
n , that just counts syn-

tactic alternation; if we modify the last clause to read ‘. . . providedthatψ is a closed formula’, we obtain the
Emerson–Lei notionΣELµ

n . (We write justΣµ
n when the distinctions are not important, or when we are making

a statement that applies to all versions.)
To get the symmetrical notion ofalternation depthof φ, we can define it to be the leastn such that

φ ∈ Σµ
n+1 ∩Πµ

n+1. To make these definitions clear, consider the following examples:

• The ‘always eventually’ formula isΠSµ
2 , but notΣSµ

2 , and so its simple alternation depth is 2. However, in
the Emerson–Lei notion, it is alsoΣELµ

2 , sinceνY.W ∧ 〈a〉Y is ΠELµ
1 and soΣELµ

2 , and by substituting the
closedΣELµ

2 (and in factΣELµ
1 ) formulaµZ.P ∨〈a〉Z forW we get ‘always eventually’ inΣELµ

2 ; hence its
Emerson–Lei (and Niwiński) alternation depth is 1.

• The ‘infinitely often’ formula isΣµ
2 but notΠµ

2 , in all three definitions, and so has alternation depth 2.

• The formulaµX.νY.[−]Y ∧ µZ.[−](X ∨Z) is ΣSµ
3 , but notΠSµ

3 ; it is alsoΣELµ
3 but notΠELµ

3 , since there
are no closed subformulae to bring the substitution clause into play. However, in the Niwiński definition,
it is actuallyΣNµ

2 : νY.[−]Y ∧W is ΠNµ
1 and soΣNµ

2 ; we can substitute theΣNµ
1 formulaµZ.[−](X ∨ Z)

for W without variable capture, and soνY.[−]Y ∧ µZ.[−](X ∨ Z) is ΣNµ
2 ; and now we can add the outer

fixpoint, still remaining inΣNµ
2 .

A natural question is whether the hierarchy of properties definable byΣµ
n formulae is actually a strict

hierarchy, or whether the hierarchy collapses at some point so that no further alternation is needed. This
problem remained open for a while; by 1990, it was known thatΣNµ

2 6= ΠNµ
2 [4]. No further advance was
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made until 1996, when the strictness of the hierarchy was established by Bradfield [8,9,11].

Theorem 7.1 For everyn, there is a formulaφ ∈ Σµ
n which is not equivalent to anyΠµ

n formula.

Bradfield established this forΣNµ
n , which implies the result for the other two notions. At the same time, Lenzi

[43] independently established a slightly weaker hierarchy theorem forΣELµ
n .

Lenzi’s proof is technically complex, and the underlying stratagem is not easy. Bradfield’s proof appears
technically complex, but most of the complexity is really just routine recursion-theoretic coding; the underlying
stratagem is quite simple, and in some ways surprising. If one takes first-order arithmetic, one can add fixpoint
operators to it, and one can then define a fixpoint alternation hierarchy in arithmetic. A standard coding and
diagonalization argument shows that this hierarchy is strict [9]. The trick now is to transfer this hierarchy to
Lµ. Simply by writing down the semantics, it is clear (give or take some work to deal with the more complex
notions of alternation) that if one takes a recursively presented transition system and codes it into the integers,
then for a modal formulaφ ∈ Σµ

n, its denotation‖φ‖ is describable by an arithmeticΣµ
n formula. However,

it is also possible, given any arithmetic fixpoint formulaχ, to build a transition system and a modal formula
φ, of the same alternation depth asχ, such that‖φ‖ is characterized byχ. If we takeχ to be a strictΣµ

n

arithmetic formula, then noΠµ
n arithmetic formula is equivalent to it, and therefore noΠµ

n modal formula can
be equivalent toφ. The transition system that is constructed is infinite, but by the finite model property, the
hierarchy transfers down to the class of finite models.

Both proof techniques construct explicit examples of hard formulae. Bradfield’s examples have the form

µXn.νXn−1. . . . µX1.[c]X1 ∨ 〈a1〉X1 ∨ . . . ∨ 〈an〉Xn.

There are further questions one can ask about the alternation hierarchy. For example, is it still strict even
on the binary tree? The answer is yes, given independently by Bradfield [10,11] and Arnold [3] – the latter
also gives a nice alternative proof of the main theorem, using topological methods rather than computability
methods.

A more interesting question, and one that is still open, is: given a formula, what is its ‘semantic’ alternation
depth? That is, what is the least alternation depth of any equivalent formula? Otto [55] showed that it is
decidable whether a formula is equivalent to an alternation-free formula, and then Küsters and Wilke showed
[41] it for alternation depth 1. Decidability is not known for higher levels.

8 Bisimulation invariance

A hallmark of modal logic is bisimulation invariance: ifs |= φ ands ands′ are bisimulation equivalent then
s′ |= φ. As we have seen, this remains true forLµ formulae. In logic, in general, structures are viewed
as equivalent when they are isomorphic. However, in computation when structures represent behaviour of
systems weaker forms of equivalence, such as automata acceptance equivalence or bisimulation equivalence,
are more appropriate; see, for example, Milner [51].

8.1 Lµ and MSOL

A modal formula can be translated into an equivalent bisimulation invariant first-order logic formula (over
transition graphs) with one free variable. The translation is merely the semantics. Letφ[x] be the translation
of φ with free variablex: for instance,P [x] = P (x) and〈a〉φ[x] = ∃y. x a−→ y ∧ φ[y]. Clearly,s |= φ iff
φ[s] holds. Van Benthem proved the converse: a bisimulation invariant first-order logic formula with one free
variable is equivalent to a modal formula. Modal logic is the bisimulation invariant fragment of first-order
logic.

The question is whether there is a similar result for closed formulae ofLµ. As we have seen, there is an
intimate relationship betweenLµ and automata, games or SnS. None of these notations provide an obvious
semantics forLµ formulae. Monadic second-order logic (MSOL) of transition graphs extends first-order logic
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with quantification over monadic predicates. With this addition we can translateLµ.

νZ.φ[x] = ∃Z.(∀y.Z(y) ⇒ φ[y]) ⇒ Z(x)

So, anLµ formula is translated into an equivalent bisimulation invariant MSOL formula with one free variable.
Remarkably, the converse is also true, as proved by Janin and Walukiewicz [33].

Theorem 8.1 A bisimulation invariant MSOL formula with one free variable is equivalent to anLµ formula.

In other words,Lµ is the bisimulation invariant fragment of MSOL.
The proof of this theorem is intricate and again illustrates the potency of automata. The authors define an

ω-expansionof a rooted model which is like the usual unravelling of the system into a tree, with the addition
that the tree containsω-many copies of every successor node. Ifφ(x) is a bisimulation invariant MSOL
formula andφ(s) holds wheres is the root of a model thenφ(s) remains true for theω-expanded model.

The proof uses modal automata from section 5.3. The transition function is defined using a simple modal
language. If the automaton is in stateq and at states in the modal model andδ(q,Prop(s)) = B then there
is a mixture setMs |= B whereMs ⊆ {(t, q′) | s a−→ t for somea andq′ ∈ Q}. Instead of simple modal
formulaeB, the automaton could employ first-order formulae with one free variableB[x]. Now, for instance,
Ms |= ∃y.x a−→ y ∧ p[y] iff (t, p) ∈ Ms for somet such thats

a−→ t. Critically, there is also a similar
automata characterisation of MSOL formulae on trees. The transition functionδ : Q × Σ → B′ whereB′ is
very similar toB[x] except that it involves inequalites. When in CNF, formulaeB′[x] have the form

∃y1, . . . yn.(
∧
i6=j

yi 6= yj ∧ x
a1−→ y1 ∧ p1[y1] ∧ . . . ∧ x

an−→ yn ∧ pn[yn] ∧ ∀z.
∧
z 6= yi ∧ ψ(z, x)

whereψ(z, x) captures the “box” formulae. The inequalities are effectively redundant in anω-expanded
model. The formulaeB′[x] collapse toB[x] with respect to these models.

Van Benthem’s theorem also holds for finite models: modal logic is the bisimulation invariant fragment of
first-order logic with respect to finite models. It is an open question if this is true forLµ and MSOL.

8.2 Multi-dimensionalLµ and Ptime

A major interest is classifying logics according to their expressive power. Computationally, we can ask whether
there are logics that characterize complexity classes. A classic result is that existential second-order logic
exactly captures NP properties of finite structures. A key open problem is whether there is such a logic for
PTIME properties. (For finite structureswith a linear orderingthe PTIME properties are exactly captured
by least fixed point logic of section 9.2.) However, Otto shows thatbisimulation invariantmonadic PTIME
properties (of modal structures) is logically characterizable by a multi-dimensionalLµ [54].

For simplicity, assume finiteLµ rooted structures whose label set is a singleton and letProp be finite.
Formulas ofLµ are interpreted with respect to a single state. Consider insteadk-tuples of states(s1, . . . , sk).
Given such tuples we can define transition relations

i−→, for eachi : 1 ≤ i ≤ k: (s1, . . . , sk)
i−→ (t1, . . . , tk)

if si −→ ti andsj = tj for all j 6= i. Otto defines the logicLµk (with Lµ = Lµ1). Formulae may contain
variablesxi, 1 ≤ i ≤ k. Atomic formulae have the formPxi: (s1, . . . , sk) |= Pxi iff P ∈ Prop(si). Modal
formulae have the form〈i〉φ and [i]φ. Formulae are closed under boolean connectives. There is a substitu-
tion operationσ : {1, . . . , k} → {1, . . . , k}: φσ is the formulaφ{xσ(1)/x1, . . . , xσ(k)/xk}. Finally, fixed
points arek-ary: µX(x1, . . . , xk).φ (and are interpreted as in section 9.2). Formulae ofLµk are bisimulation
invariant. The logic that characterizes bisimulation invariant monadic PTIME are the monadic formulae of⋃

k>0Lµ
k. Crucially, fork > 1, bisimulation equivalence is definable inLµk.

νX(x1, . . . , xk).
∧

P∈Prop

Px1 ⇔ Px2 ∧ [1]〈2〉X(x1, . . . , xk) ∧ [2]〈1〉X(x1, . . . , xk)

For canonical finite rooted models (rooted models quotiented with respect to bisimulation equivalence) one
can define a linear ordering on states via bisimulationinequivalence. So, each PTIME property is definable in
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least fixed point logic and, in fact, in someLµk.

8.3 Bisimulation quantifiers and interpolation

In previous sections, a number of standard logical questions about theLµ have been covered, such as satis-
fiability, completeness, etc. These were all addressed, if not solved, early in the history of the logic. There
are other standard questions about logics which, perhaps surprisingly, were not addressed until quite recently.
In this subsection, we describe briefly work on interpolation theorems and related issues. A key ingredient in
these proofs is again alternating parity automata; another ingredient is an interesting notion of ‘bisimulation
quantifier’.

A logic enjoys theCraig interpolation propertyif wheneverφ⇒ ψ, then there is a third formulaχ, using
only those atomic symbols occurring in bothφ andψ, such thatφ ⇒ χ ⇒ ψ. The uniform interpolation
property requires further that to findχ, it suffices to know only one ofφ or ψ and what the common lan-
guage is. (That is, one can construct the strongest formula implied byφ in a given language, or the weakest
formula implyingψ in a given language.) Maksimova showed [47] that most common temporal logics do
not have interpolation. In [16], d’Agostino and Hollenberg show thatLµ has interpolation, and even uniform
interpolation, as we now sketch.

Let φ be a sentence, andP an atomic proposition occurring inφ. The aim is to construct a formulã∃P.φ
which is the strongest implicate ofφ in the language omittingP . This can be done by using results of the
Janin–Walukiewicz paper discussed earlier: translateφ into an MSOL sentencẽφ, quantify it (in MSOL) to
form ∃P.φ̃, and then apply the construction mentioned to produce again anLµ formula(∃P.φ̃)∨, which is true
in any rooted structure whoseω-expansion satisfies∃P.φ̃; but if a structure satisfiesφ, then itsω-expansion
satisfies∃P.φ̃, since the original valuation ofP provides a witness. With some more technical lemmas, it is
shown that(∃P.φ̃)∨ is indeed the uniform interpolant ofφ with respect to the vocabulary omittingP , and
this is the definition of̃∃P.φ. A similar definition and construction also works for action labels:∃̃a.φ is the
strongest implicate ofφ in the language omitting the labela.

The reason for the notatioñ∃P.φ is that from the construction, it can be seen that a rooted structure satisfies
∃̃P.φ iff there is a bisimlation equivalent rooted structure in the vocabulary excludingP that satisfiesφ.

In the above,̃∃P.φ was, by definition, anLµ formula. It is natural to ask whether bisimulation quantifiers
can give the same expressive power as the fixpoint operators. It turns out to be not sufficient to add∃̃ to modal
logic; but [16] does show that adding̃∃ to PDL givesLµ.

The techniques used here also give further results. One of the most satisfying is a Lyndon theorem: if an
Lµ sentence is monotone in a propositionP , then it is equivalent to a sentence positive inP . The proof is
intricate.

9 Generalized mu-calculi

We have seen thatLµ has many nice properties. One interesting thread of research in recent years has been
the investigation of why it enjoys these properties – is it because it is amodalfixpoint logic, because it is a
fixpoint logic, or what else? In this section, we will briefly survey some of these investigations, and some of
the more interesting generalizations ofLµ.

9.1 Lµ with past

A simple extension ofLµ is to include converse labelsa: t
a−→ s iff s

a−→ t. Modalities can now include
converses.Lµwith converse fails to have the finite model property:νX.〈a〉(X∧µY.[a]Y ) is only satisfiable in
an infinite state model. However, it retains both the tree model property and decidability of satisfiability (with-
out an increase in complexity). The decidability proof uses two-way automata, alternating parity automata of
section 5.3 whose modal language is extended with converse modalities [69].
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9.2 Least fixpoint logic

Modal logic is a monadic fragment of first-order logic.Lµ is such a fragment of least fixpoint logic, or LFP,
obtained by adding fixpoint constructors to first order logic. It is primarily studied in the field of finite model
theory; in the realm of infinite models, it is relatively little used, though occasionally used by set theorists as
part of the theory of inductive definability. Finite model theorists use various notations, but usually do not use
µ andν, preferring to write LFP/GFP orlfp /gfp. We shall stick to a mu-calculus-like notation.

Assume the usual apparatus of first order logic over some structureS. LFP is obtained by addingrelation
variablesX,Y, . . . of given arities, and aleast fixpoint operatorµ which formsrelation termsµX, ~x.φ, where
~x is a tuple of arity(X) individual variables, and the relation variableX occurs only positively inφ. Assuming
a valuation for the other free variables ofφ, the semantics ofµX, ~x.φ is the least fixpoint of the mapSn → Sn,
wheren is the arity ofX, given byT 7→ {~x : φ[X := T ]}.

LFP has the following properties (refer to a textbook such as [19] for proofs, and for details of results
mentioned in this section without citations):

• On finite models with a built-in linear order, LFP captures polynomial time, which makes it useful for
complexity theorists. (A logicL captures a complexity classC if every set inC can be defined by a formula
of L, and conversely everyL-definable set is inC.)

• On finite models, the fixpoint alternation hierarchy collapses, so that any LFP property can be expressed
with a single fixpoint; provided that the arity of relation symbols is not bounded. If the arity is bounded,
then the fixpoint hierarchy does not collapse.

• LFP does not have the finite model property.

• Satisfiability is undecidable.

LFP retains a fundamental semantic theorem which can be presented as a model-checking game as in sec-
tion 4.4. The game is now played on an arena of formulaeφ[s1, . . . , sn] with elementssi of the model for indi-
vidual variables. The initial position is the starting closed formulaφ0 in positive normal form.∀ is responsible
for making a move from a position(φ∧ψ)[s1, . . . , sn], the available choices are{φ[s1, . . . , sn], ψ[s1, . . . , sn]},
and from a position∀xn+1.φ[s1, . . . , sn] whose available choices are the set{φ[s1, . . . , sn, s] | s ∈ S}. ∃ is re-
sponsible for∨ and existential quantification. Final positions are of the formP [s1, . . . , sn] and¬P [s1, . . . , sn].
∃ wins such a position if it is true. Again,∃ wins an infinite play if the outermost fixed point variableY that
occurs infinitely often in the play is aν-variable.∃ has a history-free winning strategy iff the initial formula is
true of the structure.

9.3 Finite variable fixpoint logics

One of the topics studied in finite model theory is thefinite variablefragments of FOL. These are the fragments
FOLk where the number of distinct variable names in a formula is restricted to a finite valuek. Ordinary modal
logic is obviously embeddable in FOL2; there are several features of modal logic that are generalizable in some
sense to FOL2; and by adding certain operators to modal logic, one can regain FOL2, albeit less succinctly
[45]. Moreover, FOL2 is reasonably tractable, and the decidability of modal logic follows from the decidability
of FOL2, which in turn follows from the fact that, like modal logic andLµ, it enjoys the finite model property.

It is therefore natural to wonder if the good properties of modal mu-calculus might be explained by con-
sidering the finite variable fragments of LFP.

However, in a well-known paper ‘Why is modal logic so robustly decidable?’ [68], Vardi analysed the
relationship between modal logic and FOL2 more carefully, and argued that it does not adequately explain
the good properties of modal logic. Furthermore, when one passes to the fixpoint version, it is even more
inadequate: for example, althoughLµ is decidable, LFP2 (andLµ2) is not decidable.

It appears, then, that finite variable fixpoint logics have little to say aboutLµ. So what are the more useful
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related logics?

9.4 Guarded fragments

In [68], Vardi argued that thetree model propertyis responsible for the good behaviour ofLµ, and CTL.
FOL2 does not have this property. However, it turns out that there are fragments of FOL which do retain the
tree model property or some suitable generalization of it. The discovery of these fragments needed a new
perception of the characteristic features of modal logic seen as a fragment of FOL.

The fact that modal logic lies in FOL2 is obvious. Somewhat less obvious is another property of the
FO translations of modal logic formulae:guardedness. A FO quantification isguardedif it has the form
∀~y.α(~x, ~y) ⇒ φ(~x, ~y) or ∃~y.α(~x, ~y) ∧ φ(~x, ~y), whereα(. . .) is an atomic formula (i.e.α is a relation symbol
or the equality symbol), and~x includes all the free variables ofφ. That is, when a quantified variable is
introduced, its values must be connected by some relation to the values of the other variables mentioned in the
formula. In the case of modal logic, the guards are the edge relations.

Guardedness was proposed by Andréka, van Benthem and Németi [2] as a better explanation of the robust
decidability of modal logic. The guarded fragment GF of first-order logic has many of the nice properties of
modal logic, for example

• GF is decidable.

• GF has the finite model property.

• GF has the appropriate generalization of the tree model property, namely that if a formula has a model, it
has a model of ‘bounded tree-width’. (Tree width is a graph-theoretic definition which measures how far a
graph is from being a tree.)

• GF-equivalence can be characterized by aguarded bisimulation, as modal equivalence is characterized by
bisimulation.

Grädel and Walukiewicz [29] studied the guarded fragment GFP of LFP. The syntactic formation rule for
fixed points is: ifφ(Y, ~x) is a guarded formula,Y occurs positively and not in the guards and all free variables
of φ(Y, ~x) are contained in~x thenµY (~x).φ(Y, ~x) is a formula of the guarded fragment of LFP. This fragment
retains the tree model property but not the finite model property, making it a better meta-language forLµ than
LFP2. An interesting first result concerned the complexity: satisfiability for GFP is 2EXPTIME-complete.
Grädel had earlier shown [27] that GF itself has 2EXPTIME satisfiability, so this is a situation where adding
fixpoints does not increase complexity - a surprising result. However, it turns out that this depends on the
unboundedwidth of formulae - the number of free variables in subformulae. If the width is bounded, then
satisfiability drops to EXPTIME-complete, which agrees with that ofLµ. The decidability proof uses two-
way alternating parity automata.

9.5 Inflationary mu-calculus

In finite model theory, as well as to some extent in classical definability theory, extensions of LFP have been
studied which relax the requirement for the body of a fixpoint operator to be monotone. One such isinflationary
fixpoint logic(IFP). In IFP, the semantics of the fixpoint operator (usually writtenifp in the finite model theory
literature, but here writtenµI) is modified. Rather than being defined as a fixpoint, it is defined in terms of
approximants; and then at each approximant, the previous approximant is unioned in:

‖µIZ
α.φ‖T

V = Z<α ∪ ‖φ‖T
V[Z:=Z<α]

On finite structures, IFP and LFP have long been known to be equi-expressive, and recently Kreutzer
showed [39] that indeed they are equi-expressive on arbitrary structures. In [18] Dawar, Grädel and Kreutzer
define inflationary modal mu-calculus, by using the above definition for fixpoints, and show that it is more
powerful thanLµ, and complex in many ways. It does not have the finite model property, and it can express
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non-regular properties. Satisfiability is undecidable and even non-arithmetic, since it is possible to interpret
arithmetic, by using the height of nodes in a well-founded tree as numbers. On the class of finite models, the
increased power results in a model-checking complexity of PSPACE.
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