
Formal and Computational Approaches to
Phonology

Thursday: Maximum entropy phonotactics

Julian Bradfield and James Kirby

University of Edinburgh



Probabilistic phonotactics

Chomsky & Halle (1965) noted that there exist three types of
possible phoneme sequences in a language:

1. Those that form existing lexical items (e.g. brick);

2. Those that form possible, but non-existing sequences (possible
in the sense of being judged by native speakers as well-formed
?blick);

3. Those judged by native speakers as impossible (*bnick).



Probabilistic phonotactics

However, not all possible words (sometimes called accidental gaps)
are judged to be equally well-formed:
E.g., pring � shlimp � fnood � ZpUk (Scholes, 1966)

Thus we might want a theory of phonotactics that captures this
gradience in well-formedness. One way to incorporate gradience is
to have a probabilistic model; and since such judgements are rarely
precisely repeatable, and vary from speaker to speaker, a degree of
random variation seems a reasonable feature.

We might also like a theory of how phonotactic grammars can be
learned from surface forms.



Probabilistic phonotactics

However, not all possible words (sometimes called accidental gaps)
are judged to be equally well-formed:
E.g., pring � shlimp � fnood � ZpUk (Scholes, 1966)

Thus we might want a theory of phonotactics that captures this
gradience in well-formedness. One way to incorporate gradience is
to have a probabilistic model; and since such judgements are rarely
precisely repeatable, and vary from speaker to speaker, a degree of
random variation seems a reasonable feature.

We might also like a theory of how phonotactic grammars can be
learned from surface forms.



Probabilistic phonotactics

However, not all possible words (sometimes called accidental gaps)
are judged to be equally well-formed:
E.g., pring � shlimp � fnood � ZpUk (Scholes, 1966)

Thus we might want a theory of phonotactics that captures this
gradience in well-formedness. One way to incorporate gradience is
to have a probabilistic model; and since such judgements are rarely
precisely repeatable, and vary from speaker to speaker, a degree of
random variation seems a reasonable feature.

We might also like a theory of how phonotactic grammars can be
learned from surface forms.



Maximum entropy

A maximum entropy (maxent, log-linear) framework provides a
natural way to express generalisations about phonotactics. Logistic
regression, PCFGs, Harmonic (OT) grammars, and HMMs are all
types of MaxEnt models.

The goal of a MaxEnt model is to maximize the probability of the
data while maximizing the entropy of the model : in other words,
to include as much information as is known from the data while
making no additional assumptions (‘the least biased estimate
possible on the given information’ – E. T. Jaynes)

Entropy is a measure of the amount of random variability in a probability

distribution: −
∑

i P(i) lnP(i).



Maximum entropy

A maximum entropy (maxent, log-linear) framework provides a
natural way to express generalisations about phonotactics. Logistic
regression, PCFGs, Harmonic (OT) grammars, and HMMs are all
types of MaxEnt models.

The goal of a MaxEnt model is to maximize the probability of the
data while maximizing the entropy of the model : in other words,
to include as much information as is known from the data while
making no additional assumptions (‘the least biased estimate
possible on the given information’ – E. T. Jaynes)

Entropy is a measure of the amount of random variability in a probability

distribution: −
∑

i P(i) lnP(i).



Maximum entropy

A maximum entropy (maxent, log-linear) framework provides a
natural way to express generalisations about phonotactics. Logistic
regression, PCFGs, Harmonic (OT) grammars, and HMMs are all
types of MaxEnt models.

The goal of a MaxEnt model is to maximize the probability of the
data while maximizing the entropy of the model : in other words,
to include as much information as is known from the data while
making no additional assumptions (‘the least biased estimate
possible on the given information’ – E. T. Jaynes)

Entropy is a measure of the amount of random variability in a probability

distribution: −
∑

i P(i) lnP(i).



Maximum entropy

Given an empirical probability distribution P, MaxEnt provides a
means of constructing an estimate P∗ of that distribution. In
particular, the MaxEnt estimate can be shown to be the one
closest to P in terms of Kullback–Leibler divergence.

The MaxEnt approach has the distinct advantage of distinguishing
the structure of the model and the objective function to be
optimized from the method used to carry out the optimization.

KL divergence measures how unlikely P is assuming P∗:

DKL(P‖P∗) =
∑

i P(i) ln(P(i)/P∗(i)).



Maximum entropy

The general form of a MaxEnt model is as follows.

Consider a
random process which produces an output y ∈ Y influenced by
some context x ∈ X .
We posit m real-valued features (not phon!) to pairs (y , x), with
values fi (y , x).
We give a weight wi to each feature.
Then the MaxEnt estimate of the probability of any given outcome
y ∈ Y (x) is then

P(y |x) =
1

Z (x)
exp

m∑
i=1

wi fi (y , x)

where Z (x) is the normalization factor∑
y∈Y (x) exp

∑m
i=1 wi fi (y , x)

In other words, the log probability of y given x is proportional to a
linear combination of m feature values.



Maximum entropy

The general form of a MaxEnt model is as follows. Consider a
random process which produces an output y ∈ Y influenced by
some context x ∈ X .

We posit m real-valued features (not phon!) to pairs (y , x), with
values fi (y , x).
We give a weight wi to each feature.
Then the MaxEnt estimate of the probability of any given outcome
y ∈ Y (x) is then

P(y |x) =
1

Z (x)
exp

m∑
i=1

wi fi (y , x)

where Z (x) is the normalization factor∑
y∈Y (x) exp

∑m
i=1 wi fi (y , x)

In other words, the log probability of y given x is proportional to a
linear combination of m feature values.



Maximum entropy

The general form of a MaxEnt model is as follows. Consider a
random process which produces an output y ∈ Y influenced by
some context x ∈ X .
We posit m real-valued features (not phon!) to pairs (y , x), with
values fi (y , x).

We give a weight wi to each feature.
Then the MaxEnt estimate of the probability of any given outcome
y ∈ Y (x) is then

P(y |x) =
1

Z (x)
exp

m∑
i=1

wi fi (y , x)

where Z (x) is the normalization factor∑
y∈Y (x) exp

∑m
i=1 wi fi (y , x)

In other words, the log probability of y given x is proportional to a
linear combination of m feature values.



Maximum entropy

The general form of a MaxEnt model is as follows. Consider a
random process which produces an output y ∈ Y influenced by
some context x ∈ X .
We posit m real-valued features (not phon!) to pairs (y , x), with
values fi (y , x).
We give a weight wi to each feature.

Then the MaxEnt estimate of the probability of any given outcome
y ∈ Y (x) is then

P(y |x) =
1

Z (x)
exp

m∑
i=1

wi fi (y , x)

where Z (x) is the normalization factor∑
y∈Y (x) exp

∑m
i=1 wi fi (y , x)

In other words, the log probability of y given x is proportional to a
linear combination of m feature values.



Maximum entropy

The general form of a MaxEnt model is as follows. Consider a
random process which produces an output y ∈ Y influenced by
some context x ∈ X .
We posit m real-valued features (not phon!) to pairs (y , x), with
values fi (y , x).
We give a weight wi to each feature.
Then the MaxEnt estimate of the probability of any given outcome
y ∈ Y (x) is then

P(y |x) =
1

Z (x)
exp

m∑
i=1

wi fi (y , x)

where Z (x) is the normalization factor∑
y∈Y (x) exp

∑m
i=1 wi fi (y , x)

In other words, the log probability of y given x is proportional to a
linear combination of m feature values.



Maximum entropy

The general form of a MaxEnt model is as follows. Consider a
random process which produces an output y ∈ Y influenced by
some context x ∈ X .
We posit m real-valued features (not phon!) to pairs (y , x), with
values fi (y , x).
We give a weight wi to each feature.
Then the MaxEnt estimate of the probability of any given outcome
y ∈ Y (x) is then

P(y |x) =
1

Z (x)
exp

m∑
i=1

wi fi (y , x)

where Z (x) is the normalization factor∑
y∈Y (x) exp

∑m
i=1 wi fi (y , x)

In other words, the log probability of y given x is proportional to a
linear combination of m feature values.



Learning MaxEnt weights

Given a model with m features and a set of n observations, we
then want to find the weight wm for each feature fm which
maximizes the model’s log-likelihood:

L(P) =
∑
x,y

P(x , y) logP(y |x)

Selecting an optimal model under this regime is generally
acknowledged to be Hard; there are several optimization methods
available, but we won’t concern ourselves with the details here.



Learning MaxEnt weights

Given a model with m features and a set of n observations, we
then want to find the weight wm for each feature fm which
maximizes the model’s log-likelihood:

L(P) =
∑
x,y

P(x , y) logP(y |x)

Selecting an optimal model under this regime is generally
acknowledged to be Hard; there are several optimization methods
available, but we won’t concern ourselves with the details here.



Applications in phonology

There have been multiple applications of MaxEnt to phonological
learning problems: Keller (2000, 2006), Goldwater & Johnson
(2003), Jäger (2004) and others.

Hayes & Wilson (2008) tackle the problem of learning a
phonotactic grammar. Their approach is especially interesting
because they propose a method to learn both constraints and
rankings directly from surface forms.

The core idea: well-formedness can be interpreted as probability.



MaxEnt for phonotactics

In Hayes and Wilson’s model, features are OT-style (markedness)
constraints, each of which is associated with a nonnegative,
real-valued weight.

In this respect it resembles Harmonic Grammar (Smolensky, 1986;
Smolensky & Legendre 2006) or Keller’s (2000, 2006) Linear OT,
as opposed to ‘classical’ OT, where constraints are strictly
dominated.

However, it’s worth noting that attempts at capturing gradience
have also been made in standard OT, e.g. Boersma & Hayes
(2001).



MaxEnt for phonotactics

Hayes and Wilson decompose the MaxEnt equation into three
parts, termed a score, a maxent value and a probability.

The score h(x) of a phonological input form x is

h(x) =
N∑
i=1

wiCi (x),

where wi is the weight of constraint Ci and Ci (x) is the number of
times form x violates constraint Ci . (This is analogous to the
feature functions described earlier.)



MaxEnt for phonotactics

Hayes and Wilson decompose the MaxEnt equation into three
parts, termed a score, a maxent value and a probability.

The maxent value P∗(x) of a phonological input form x is

P∗(x) = exp(−h(x))

= exp
(
−

N∑
i=1

wiCi (x)
)
,

in other words, the conditional probability given earlier, without
the normalizing constant. (The score is negated so that forms with
more violations get lower values.)



MaxEnt for phonotactics

Hayes and Wilson decompose the MaxEnt equation into three
parts, termed a score, a maxent value and a probability.

The probability P(x) of a phonological input form x and its
maxent value P∗(x) is then

P(x) = P∗(x)/Z

where Z =
∑

y∈Ω P∗(y) is the normalizer.



Learning constraints and weights

Learning constraint weights, given a set of constraints, is an
optimization problem we won’t discuss in depth here. (H&W use
an iterated hill-climbing search procedure; other methods are
possible. See Malouf (2002) for an overview.)

An (arguably more interesting) problem is determining the set of
constraints, given the input data. Given the huge number of
distributional generalizations consistent with any given surface
form, this problem is similarly non-trivial...



Learning constraints and weights

Learning constraint weights, given a set of constraints, is an
optimization problem we won’t discuss in depth here. (H&W use
an iterated hill-climbing search procedure; other methods are
possible. See Malouf (2002) for an overview.)

An (arguably more interesting) problem is determining the set of
constraints, given the input data. Given the huge number of
distributional generalizations consistent with any given surface
form, this problem is similarly non-trivial...



Learning constraints and weights

While often modellers assume the constraint set is given by UG,
H&W back off and assume instead that the learner has access to

1. a set of (universal) distinctive features;

2. the inventory of segments in the target language;

3. the feature specifications for each of those segments.

(Where do they come from? See e.g. Mielke 2004, Lin 2005...)



Learning constraints

In particular, H&W posit constraints that target natural classes of
features, but these are basically just functions that take as input a
sequence of feature matrices, and return a number of matches.

So for instance a constraint such as *[+son, +dors] penalizes the
segment [N] (et al.); a constraint like *[+cons] [+cons, +cont]
penalizes a sequence of C + fricative (e.g. df, pT, sh); and so on.

They also permit constraints to have at most one negated feature
matrix: e.g. [αF][∧βG] means ‘feature F with value α cannot be
followed by feature G with value β’.

This allows concise expression of logical implication: *[αF][∧βG]
therefore means [αF] must be followed by [βG].



Learning constraints

In particular, H&W posit constraints that target natural classes of
features, but these are basically just functions that take as input a
sequence of feature matrices, and return a number of matches.

So for instance a constraint such as *[+son, +dors] penalizes the
segment [N] (et al.); a constraint like *[+cons] [+cons, +cont]
penalizes a sequence of C + fricative (e.g. df, pT, sh); and so on.

They also permit constraints to have at most one negated feature
matrix: e.g. [αF][∧βG] means ‘feature F with value α cannot be
followed by feature G with value β’.

This allows concise expression of logical implication: *[αF][∧βG]
therefore means [αF] must be followed by [βG].



Learning constraints

In particular, H&W posit constraints that target natural classes of
features, but these are basically just functions that take as input a
sequence of feature matrices, and return a number of matches.

So for instance a constraint such as *[+son, +dors] penalizes the
segment [N] (et al.); a constraint like *[+cons] [+cons, +cont]
penalizes a sequence of C + fricative (e.g. df, pT, sh); and so on.

They also permit constraints to have at most one negated feature
matrix: e.g. [αF][∧βG] means ‘feature F with value α cannot be
followed by feature G with value β’.

This allows concise expression of logical implication: *[αF][∧βG]
therefore means [αF] must be followed by [βG].



Learning constraints

In particular, H&W posit constraints that target natural classes of
features, but these are basically just functions that take as input a
sequence of feature matrices, and return a number of matches.

So for instance a constraint such as *[+son, +dors] penalizes the
segment [N] (et al.); a constraint like *[+cons] [+cons, +cont]
penalizes a sequence of C + fricative (e.g. df, pT, sh); and so on.

They also permit constraints to have at most one negated feature
matrix: e.g. [αF][∧βG] means ‘feature F with value α cannot be
followed by feature G with value β’.

This allows concise expression of logical implication: *[αF][∧βG]
therefore means [αF] must be followed by [βG].



Learning constraints

If C is the number of natural classes (combinations of features) for
a given set of features, and n is the number of feature matrices
that may occur in a given constraint, it is clear that the number of
possible constraints can grow quite large even for smallish values of
n and C (say, n = 4 and C = 100...)

H&W keep this manageable by employing underspecified feature
representations to reduce the size of C and holding n at 2 (for
segmental constraints).

Even with a reasonable number of constraints (possibly in the tens
of millions, but not higher), search heuristics are necessary to
identify the most accurate and general constraints in the set.



Learning constraints

If C is the number of natural classes (combinations of features) for
a given set of features, and n is the number of feature matrices
that may occur in a given constraint, it is clear that the number of
possible constraints can grow quite large even for smallish values of
n and C (say, n = 4 and C = 100...)

H&W keep this manageable by employing underspecified feature
representations to reduce the size of C and holding n at 2 (for
segmental constraints).

Even with a reasonable number of constraints (possibly in the tens
of millions, but not higher), search heuristics are necessary to
identify the most accurate and general constraints in the set.



Learning constraints

If C is the number of natural classes (combinations of features) for
a given set of features, and n is the number of feature matrices
that may occur in a given constraint, it is clear that the number of
possible constraints can grow quite large even for smallish values of
n and C (say, n = 4 and C = 100...)

H&W keep this manageable by employing underspecified feature
representations to reduce the size of C and holding n at 2 (for
segmental constraints).

Even with a reasonable number of constraints (possibly in the tens
of millions, but not higher), search heuristics are necessary to
identify the most accurate and general constraints in the set.



Learning constraints

H&W employ two heuristics: accuracy and generality.

Accuracy is assessed as the number of observed violations of a
constraint divided by the expected number of violations given the
current grammar

Constraints are then sorted using a stepwise accuracy scale
(actually a statistical upper confidence limit on O/E , s.t. a
difference obtains between a constraint of accuracy 0/10 and one
of 0/1000).

Generality is assessed by length (shorter constraints � longer
constraints) and number of segments covered by the natural
classes the constraint expresses.



Learning constraints

H&W employ two heuristics: accuracy and generality.

Accuracy is assessed as the number of observed violations of a
constraint divided by the expected number of violations given the
current grammar

Constraints are then sorted using a stepwise accuracy scale
(actually a statistical upper confidence limit on O/E , s.t. a
difference obtains between a constraint of accuracy 0/10 and one
of 0/1000).

Generality is assessed by length (shorter constraints � longer
constraints) and number of segments covered by the natural
classes the constraint expresses.



Learning constraints

H&W employ two heuristics: accuracy and generality.

Accuracy is assessed as the number of observed violations of a
constraint divided by the expected number of violations given the
current grammar

Constraints are then sorted using a stepwise accuracy scale
(actually a statistical upper confidence limit on O/E , s.t. a
difference obtains between a constraint of accuracy 0/10 and one
of 0/1000).

Generality is assessed by length (shorter constraints � longer
constraints) and number of segments covered by the natural
classes the constraint expresses.



Learning the grammar

Algorithm alternates between selection and weighting: a (general,
accurate) constraint is selected from the universal set, the weights
are recomputed, another constraint is selected, etc.

Phonotactic learning algorithm
Input: a set Σ of segments classified by a set F of features, a set
D of surface forms drawn from Σ∗, an ascending set A of accuracy
levels, and a maximum constraint size N
1 begin with an empty grammar G
2 for each accuracy level a in A do
3 repeat
4 select the most general constraint with accuracy less than a

(if one exists) and add it to G
5 train the weights of the constraints in G
6 until no constraint is selected in step 4



Learning the grammar

Algorithm alternates between selection and weighting: a (general,
accurate) constraint is selected from the universal set, the weights
are recomputed, another constraint is selected, etc.

Phonotactic learning algorithm
Input: a set Σ of segments classified by a set F of features, a set
D of surface forms drawn from Σ∗, an ascending set A of accuracy
levels, and a maximum constraint size N

1 begin with an empty grammar G
2 for each accuracy level a in A do
3 repeat
4 select the most general constraint with accuracy less than a

(if one exists) and add it to G
5 train the weights of the constraints in G
6 until no constraint is selected in step 4



Learning the grammar

Algorithm alternates between selection and weighting: a (general,
accurate) constraint is selected from the universal set, the weights
are recomputed, another constraint is selected, etc.

Phonotactic learning algorithm
Input: a set Σ of segments classified by a set F of features, a set
D of surface forms drawn from Σ∗, an ascending set A of accuracy
levels, and a maximum constraint size N
1 begin with an empty grammar G
2 for each accuracy level a in A do
3 repeat
4 select the most general constraint with accuracy less than a

(if one exists) and add it to G
5 train the weights of the constraints in G
6 until no constraint is selected in step 4



So how does it do?

Demo: English onsets



So how does it do?



More complex phonotactic relations: vowel harmony

Shona: five vowel system [i e a o u] with asymmetric height
harmony

i → e / {e, o} (so bibiZa but bebera, *bebira)

u → o / o (so baduka but bodoka, *boduka)

[o] occurs noninitially only if preceding vowel is also [o]; [e] occurs
noninitially only if preceding vowel is [e] or [o]

(Conversely, the above rules say [u] occurs noninitially only if
preceding vowel isn’t [o], and [i] occurs noninitially only if
preceding vowel isn’t [e] or [o].)

[a] is freely distributed.



More complex phonotactic relations: vowel harmony

If there is a heuristic/practical limit on the gram size, how does the
learner deal with nonlocal phonotactics like vowel harmony?

Answer: poorly.

I Correctly prohibits e.g. ?momina, *memina, *mamemo...

I but incorrectly permits ?momuma, *monduma, *mendima



More complex phonotactic relations: vowel harmony

Solution: allow constraint induction over a subset of the
representation: the vowel tier (or projection)



More complex phonotactic relations: vowel harmony

Demo: Shona vowel harmony

*[+high][−high,−low] : noninitial [e] w/out harmony trigger
prohibited

*[∧−high,−low][−high,−low]: [a i u] cannot be followed by [e o]

*[−high,−back][+high,−low,−back]: *eo

..etc



Summary

I Maximum entropy approaches provide a convenient, principled
way to model constraint-based grammars

I Naturally produce probabilistic output, which can be compared
to probabilistic linguistic judgments, frequencies, etc.

I However, don’t displace the need for phonological analysis, as
indicated by the failure of the baseline model to deal with the
nonlocal phonotactics of Shona.


