
Formal and Computational Approaches to
Phonology

Tuesday: Optimality Theory

Julian Bradfield and James Kirby

University of Edinburgh



Optimality Theory

was introduced by Prince and Smolensky in 1993, following some
years of development of precursor theories (Harmonic Grammar).
It rapidly became the dominant paradigm.

OT abandons the generative model (whether traditional or
autosegmental) entirely, and replaces formal language theory by
constraint solving.



OT in a nutshell

A grammar is a set of constraints which say how well an input
string (typically in SPE-like representation) matches an output
string. This may include constraints solely on the output string.

The act of phonological processing compares, in parallel, all
possible output strings against the input string, and selects the
‘best’ match, that is the one that satisfies the most important
constraints.

At this point, you should be very worried . . .

The set of constraints is posited to be universal, and languages
differ only in the priorities they assign to constraints.



OT in a nutshell

A grammar is a set of constraints which say how well an input
string (typically in SPE-like representation) matches an output
string. This may include constraints solely on the output string.

The act of phonological processing compares, in parallel, all
possible output strings against the input string, and selects the
‘best’ match, that is the one that satisfies the most important
constraints.

At this point, you should be very worried . . .

The set of constraints is posited to be universal, and languages
differ only in the priorities they assign to constraints.



OT in a nutshell

A grammar is a set of constraints which say how well an input
string (typically in SPE-like representation) matches an output
string. This may include constraints solely on the output string.

The act of phonological processing compares, in parallel, all
possible output strings against the input string, and selects the
‘best’ match, that is the one that satisfies the most important
constraints.

At this point, you should be very worried . . .

The set of constraints is posited to be universal, and languages
differ only in the priorities they assign to constraints.



OT in a nutshell

A grammar is a set of constraints which say how well an input
string (typically in SPE-like representation) matches an output
string. This may include constraints solely on the output string.

The act of phonological processing compares, in parallel, all
possible output strings against the input string, and selects the
‘best’ match, that is the one that satisfies the most important
constraints.

At this point, you should be very worried . . .

The set of constraints is posited to be universal, and languages
differ only in the priorities they assign to constraints.



OT by example

The mechanism of OT is agnostic about the form of input and
output; it is applied to syntax, morphology, prosody and segmental
phonology. We’ll stick to (mostly segmental) phonology.

In phonological OT, input strings and output strings are typically
feature bundles as in SPE, abbreviated by the usual phonetic
symbols. For example, the English word ‘income’ might appear as
the input string /Ink2m/.

The candidate output strings are all logically possible sequences of
English phonemes (or phones, depending on your point of view).
How do we select the right one (/INk2m/)?

OT constraints fall into two main classes: faithfulness and
markedness. Faithfulness says: ‘the output should be the same as
the input’. Markedness says: ‘but other considerations apply’.



OT by example

The mechanism of OT is agnostic about the form of input and
output; it is applied to syntax, morphology, prosody and segmental
phonology. We’ll stick to (mostly segmental) phonology.

In phonological OT, input strings and output strings are typically
feature bundles as in SPE, abbreviated by the usual phonetic
symbols. For example, the English word ‘income’ might appear as
the input string /Ink2m/.

The candidate output strings are all logically possible sequences of
English phonemes (or phones, depending on your point of view).
How do we select the right one (/INk2m/)?

OT constraints fall into two main classes: faithfulness and
markedness. Faithfulness says: ‘the output should be the same as
the input’. Markedness says: ‘but other considerations apply’.



OT by example

The mechanism of OT is agnostic about the form of input and
output; it is applied to syntax, morphology, prosody and segmental
phonology. We’ll stick to (mostly segmental) phonology.

In phonological OT, input strings and output strings are typically
feature bundles as in SPE, abbreviated by the usual phonetic
symbols. For example, the English word ‘income’ might appear as
the input string /Ink2m/.

The candidate output strings are all logically possible sequences of
English phonemes (or phones, depending on your point of view).
How do we select the right one (/INk2m/)?

OT constraints fall into two main classes: faithfulness and
markedness. Faithfulness says: ‘the output should be the same as
the input’. Markedness says: ‘but other considerations apply’.



OT by example

The mechanism of OT is agnostic about the form of input and
output; it is applied to syntax, morphology, prosody and segmental
phonology. We’ll stick to (mostly segmental) phonology.

In phonological OT, input strings and output strings are typically
feature bundles as in SPE, abbreviated by the usual phonetic
symbols. For example, the English word ‘income’ might appear as
the input string /Ink2m/.

The candidate output strings are all logically possible sequences of
English phonemes (or phones, depending on your point of view).
How do we select the right one (/INk2m/)?

OT constraints fall into two main classes: faithfulness and
markedness. Faithfulness says: ‘the output should be the same as
the input’. Markedness says: ‘but other considerations apply’.



Faithfulness

In general, there are faithfulness constraints that say:

I MaxIO: every segment in the input matches one in the output

I DepIO: every segment in the output matches one in the input

I IdentIO(F ) matching segments have the same value for
feature F .

If these were all, the best output is ‘obviously’ /Ink2m/.



Faithfulness

In general, there are faithfulness constraints that say:

I MaxIO: every segment in the input matches one in the output

I DepIO: every segment in the output matches one in the input

I IdentIO(F ) matching segments have the same value for
feature F .

If these were all, the best output is ‘obviously’ /Ink2m/.



Faithfulness

In general, there are faithfulness constraints that say:

I MaxIO: every segment in the input matches one in the output

I DepIO: every segment in the output matches one in the input

I IdentIO(F ) matching segments have the same value for
feature F .

If these were all, the best output is ‘obviously’ /Ink2m/.



Faithfulness

In general, there are faithfulness constraints that say:

I MaxIO: every segment in the input matches one in the output

I DepIO: every segment in the output matches one in the input

I IdentIO(F ) matching segments have the same value for
feature F .

If these were all, the best output is ‘obviously’ /Ink2m/.



Markedness

Simplifying somewhat, the constraint that effects nasal assimilation
is:

I *HetNasStop: heterorganic nasal–stop clusters are
prohibited. That is, in any C1C2 cluster in the output, where
C1 is [+nasal,−cont] and C2 is [−nasal,−cont], C1 and C2

must agree on the place features [ant,cor].

If this constraint is less important than all the faithfulness
constraints, it makes no difference: but if we rank it above the
place faithfulness constraints:

*HetNasStop � IdentIO(ant,cor)

then either /Int2m/ or /INk2m/ will be the best candidate. Now
what?



Markedness

Simplifying somewhat, the constraint that effects nasal assimilation
is:

I *HetNasStop: heterorganic nasal–stop clusters are
prohibited. That is, in any C1C2 cluster in the output, where
C1 is [+nasal,−cont] and C2 is [−nasal,−cont], C1 and C2

must agree on the place features [ant,cor].

If this constraint is less important than all the faithfulness
constraints, it makes no difference: but if we rank it above the
place faithfulness constraints:

*HetNasStop � IdentIO(ant,cor)

then either /Int2m/ or /INk2m/ will be the best candidate. Now
what?



Constraint proliferation

Now we have to explain why the nasal assimilates rather than the
stop. Two most obvious possibilities . . .

1. We could break apart the faithfulness constraints, and say
that place faithfulness is more important for non-nasals than
for nasals:
IdentIO(ant, cor | −nas) � *HetNasStop �
IdentIO(ant, cor | +nas)

2. Or maybe it’s that faithfulness for onset consonants is more
important than for coda consonants:
IdentIO(ant, cor | onset) � *HetNasStop �
IdentIO(ant, cor | coda)

(2) sounds plausible: the onset position is more salient. But now
we have constraints referring to ‘onset’ and ‘coda’. How do we
know the syllable structure of /Ink2m/? By checking constraints
about syllables! That gets done in parallel with everything else.
What about ‘ink’, ‘succinct’?



Constraint proliferation

Now we have to explain why the nasal assimilates rather than the
stop. Two most obvious possibilities . . .

1. We could break apart the faithfulness constraints, and say
that place faithfulness is more important for non-nasals than
for nasals:
IdentIO(ant, cor | −nas) � *HetNasStop �
IdentIO(ant, cor | +nas)

2. Or maybe it’s that faithfulness for onset consonants is more
important than for coda consonants:
IdentIO(ant, cor | onset) � *HetNasStop �
IdentIO(ant, cor | coda)

(2) sounds plausible: the onset position is more salient. But now
we have constraints referring to ‘onset’ and ‘coda’. How do we
know the syllable structure of /Ink2m/? By checking constraints
about syllables! That gets done in parallel with everything else.
What about ‘ink’, ‘succinct’?



Constraint proliferation

Now we have to explain why the nasal assimilates rather than the
stop. Two most obvious possibilities . . .

1. We could break apart the faithfulness constraints, and say
that place faithfulness is more important for non-nasals than
for nasals:
IdentIO(ant, cor | −nas) � *HetNasStop �
IdentIO(ant, cor | +nas)

2. Or maybe it’s that faithfulness for onset consonants is more
important than for coda consonants:
IdentIO(ant, cor | onset) � *HetNasStop �
IdentIO(ant, cor | coda)

(2) sounds plausible: the onset position is more salient. But now
we have constraints referring to ‘onset’ and ‘coda’. How do we
know the syllable structure of /Ink2m/? By checking constraints
about syllables! That gets done in parallel with everything else.

What about ‘ink’, ‘succinct’?



Constraint proliferation

Now we have to explain why the nasal assimilates rather than the
stop. Two most obvious possibilities . . .

1. We could break apart the faithfulness constraints, and say
that place faithfulness is more important for non-nasals than
for nasals:
IdentIO(ant, cor | −nas) � *HetNasStop �
IdentIO(ant, cor | +nas)

2. Or maybe it’s that faithfulness for onset consonants is more
important than for coda consonants:
IdentIO(ant, cor | onset) � *HetNasStop �
IdentIO(ant, cor | coda)

(2) sounds plausible: the onset position is more salient. But now
we have constraints referring to ‘onset’ and ‘coda’. How do we
know the syllable structure of /Ink2m/? By checking constraints
about syllables! That gets done in parallel with everything else.
What about ‘ink’, ‘succinct’?



Compare with SPE

In traditional generative phonology, we would write (simplified)
nasal assimilation

[
+nasal

]
→
[
αcor
βant

]/
−−−


−cont
−nasal
αcor
βant



Class Discussion! Compare and contrast the phonological
understanding the two approaches seem to give. From what we
know of OT so far, how hard is it to compute? (SPE has a
hundred or so rules, expanding to a few thousand once schemes are
unpacked; an OT equivalent (never been done) would have
thousands or tens of thousands of constraints.)

Exercise: One of the simplifications was that this story only really
applies to /n/. English deals with /m/-stop clusters by epenthesis:
e.g. empty (orig. emti), umpteen, bum(p)kin. Refine our
constraints to do this.



Compare with SPE

In traditional generative phonology, we would write (simplified)
nasal assimilation

[
+nasal

]
→
[
αcor
βant

]/
−−−


−cont
−nasal
αcor
βant


Class Discussion! Compare and contrast the phonological
understanding the two approaches seem to give. From what we
know of OT so far, how hard is it to compute? (SPE has a
hundred or so rules, expanding to a few thousand once schemes are
unpacked; an OT equivalent (never been done) would have
thousands or tens of thousands of constraints.)

Exercise: One of the simplifications was that this story only really
applies to /n/. English deals with /m/-stop clusters by epenthesis:
e.g. empty (orig. emti), umpteen, bum(p)kin. Refine our
constraints to do this.



Compare with SPE

In traditional generative phonology, we would write (simplified)
nasal assimilation

[
+nasal

]
→
[
αcor
βant

]/
−−−


−cont
−nasal
αcor
βant


Class Discussion! Compare and contrast the phonological
understanding the two approaches seem to give. From what we
know of OT so far, how hard is it to compute? (SPE has a
hundred or so rules, expanding to a few thousand once schemes are
unpacked; an OT equivalent (never been done) would have
thousands or tens of thousands of constraints.)

Exercise: One of the simplifications was that this story only really
applies to /n/. English deals with /m/-stop clusters by epenthesis:
e.g. empty (orig. emti), umpteen, bum(p)kin. Refine our
constraints to do this.



Constraint interaction

The power of OT comes from the interaction of differently ranked
constraints. The difficulty of OT . . .

Problems in analysing the complexity of OT:

1. that infinite number of candidate outputs!

2. what exactly are we allowed to say in constraints?

3. what exactly does being the best candidate mean?

(3) is addressed with formal precision by Prince and Smolensky;
(1) and (2) are not.

(3) makes OT non-finite-state, in theory: evaluation counts not
only which constraints are violated, but how many times they are
violated.



Constraint interaction

The power of OT comes from the interaction of differently ranked
constraints. The difficulty of OT . . .

Problems in analysing the complexity of OT:

1. that infinite number of candidate outputs!

2. what exactly are we allowed to say in constraints?

3. what exactly does being the best candidate mean?

(3) is addressed with formal precision by Prince and Smolensky;
(1) and (2) are not.

(3) makes OT non-finite-state, in theory: evaluation counts not
only which constraints are violated, but how many times they are
violated.



Constraint interaction

The power of OT comes from the interaction of differently ranked
constraints. The difficulty of OT . . .

Problems in analysing the complexity of OT:

1. that infinite number of candidate outputs!

2. what exactly are we allowed to say in constraints?

3. what exactly does being the best candidate mean?

(3) is addressed with formal precision by Prince and Smolensky;
(1) and (2) are not.

(3) makes OT non-finite-state, in theory: evaluation counts not
only which constraints are violated, but how many times they are
violated.



Regular OT

T. Mark Ellison proposed regular OT:

I the candidates are a regular set (e.g. the set of all strings!)

I constraints are finite transducers (from input/output pairs to
a unary number)

Then apply standard automata-theoretic techniques, plus some
cleverness, to find the best candidate.

Good news: time is linear in the size of the input string.

Bad news: it’s linear(ish) in the size of the constraint automaton,
which is a product (approximately) of the individual constraint
automata.



Regular OT

T. Mark Ellison proposed regular OT:

I the candidates are a regular set (e.g. the set of all strings!)

I constraints are finite transducers (from input/output pairs to
a unary number)

Then apply standard automata-theoretic techniques, plus some
cleverness, to find the best candidate.

Good news: time is linear in the size of the input string.

Bad news: it’s linear(ish) in the size of the constraint automaton,
which is a product (approximately) of the individual constraint
automata.



Regular OT

T. Mark Ellison proposed regular OT:

I the candidates are a regular set (e.g. the set of all strings!)

I constraints are finite transducers (from input/output pairs to
a unary number)

Then apply standard automata-theoretic techniques, plus some
cleverness, to find the best candidate.

Good news: time is linear in the size of the input string.

Bad news: it’s linear(ish) in the size of the constraint automaton,
which is a product (approximately) of the individual constraint
automata.



Primitive OT

Jason Eisner proposed Primitive OT (OTP):

I uses an autosegmental representation – but simpler than
standard.

I Candidates are linearizations of the autosegmental input,
freely decorated with output-only stuff.

I Constraints mention only ‘implication’ and ‘clash’ of
autosegmental elements: α overlaps with β in the
linearization, or α must not overlap with β in the linearization.

This is more restricted than OT in practice, but can be argued to
be adequate.

Computation is done similarly to Ellison, with some improvements.

Again, linear in size of input, but apparently exponential (NP-hard)
in the size of the grammar.



Primitive OT

Jason Eisner proposed Primitive OT (OTP):

I uses an autosegmental representation – but simpler than
standard.

I Candidates are linearizations of the autosegmental input,
freely decorated with output-only stuff.

I Constraints mention only ‘implication’ and ‘clash’ of
autosegmental elements: α overlaps with β in the
linearization, or α must not overlap with β in the linearization.

This is more restricted than OT in practice, but can be argued to
be adequate.

Computation is done similarly to Ellison, with some improvements.

Again, linear in size of input, but apparently exponential (NP-hard)
in the size of the grammar.



Primitive OT

Jason Eisner proposed Primitive OT (OTP):

I uses an autosegmental representation – but simpler than
standard.

I Candidates are linearizations of the autosegmental input,
freely decorated with output-only stuff.

I Constraints mention only ‘implication’ and ‘clash’ of
autosegmental elements: α overlaps with β in the
linearization, or α must not overlap with β in the linearization.

This is more restricted than OT in practice, but can be argued to
be adequate.

Computation is done similarly to Ellison, with some improvements.

Again, linear in size of input, but apparently exponential (NP-hard)
in the size of the grammar.



Primitive OT

Jason Eisner proposed Primitive OT (OTP):

I uses an autosegmental representation – but simpler than
standard.

I Candidates are linearizations of the autosegmental input,
freely decorated with output-only stuff.

I Constraints mention only ‘implication’ and ‘clash’ of
autosegmental elements: α overlaps with β in the
linearization, or α must not overlap with β in the linearization.

This is more restricted than OT in practice, but can be argued to
be adequate.

Computation is done similarly to Ellison, with some improvements.

Again, linear in size of input, but apparently exponential (NP-hard)
in the size of the grammar.



Primitive OT

Jason Eisner proposed Primitive OT (OTP):

I uses an autosegmental representation – but simpler than
standard.

I Candidates are linearizations of the autosegmental input,
freely decorated with output-only stuff.

I Constraints mention only ‘implication’ and ‘clash’ of
autosegmental elements: α overlaps with β in the
linearization, or α must not overlap with β in the linearization.

This is more restricted than OT in practice, but can be argued to
be adequate.

Computation is done similarly to Ellison, with some improvements.

Again, linear in size of input, but apparently exponential (NP-hard)
in the size of the grammar.



‘The insufficiency of pencil and paper linguistics’

Lauri Karttunen gave a lovely demonstration of why even
theoretical phonologists should implement, especially in OT . . .

Prosody – syllabification and stress – was the original OT
application (also of autosegmental theories). Finnish stress is a
popular example: traditionally,

I Trochaic stress: main stress on first syllable, secondary
stresses on alternate syllables thereafter (except last).
päätöskonsertista

I But secondary stress skips a light syllable followed by a
non-final heavy one: E.g. rakastajattarenako

I (Other refinements ignored here.)



‘The insufficiency of pencil and paper linguistics’

Lauri Karttunen gave a lovely demonstration of why even
theoretical phonologists should implement, especially in OT . . .

Prosody – syllabification and stress – was the original OT
application (also of autosegmental theories). Finnish stress is a
popular example: traditionally,

I Trochaic stress: main stress on first syllable, secondary
stresses on alternate syllables thereafter (except last).
päätöskonsertista

I But secondary stress skips a light syllable followed by a
non-final heavy one: E.g. rakastajattarenako

I (Other refinements ignored here.)



‘The insufficiency of pencil and paper linguistics’

Lauri Karttunen gave a lovely demonstration of why even
theoretical phonologists should implement, especially in OT . . .

Prosody – syllabification and stress – was the original OT
application (also of autosegmental theories). Finnish stress is a
popular example: traditionally,

I Trochaic stress: main stress on first syllable, secondary
stresses on alternate syllables thereafter (except last).
päätöskonsertista

I But secondary stress skips a light syllable followed by a
non-final heavy one: E.g. rakastajattarenako

I (Other refinements ignored here.)



Elenbaas in her thesis developed an OT theory of prosody, with
Finnish as the running example. Kiparsky took it up and developed
it further.

They require nine constraints, and they showed that only one
ranking does the job for Finnish.

Karttunen implemented it, and showed that that ranking does not
in fact do the job: for example, it gives *kalasteleminen instead of
kalasteleminen

His implementation is a finite state approximation to real OT
(limiting the maximum number of constraint violations), with
various techniques to prune candidate generation efficiently.



Elenbaas in her thesis developed an OT theory of prosody, with
Finnish as the running example. Kiparsky took it up and developed
it further.

They require nine constraints, and they showed that only one
ranking does the job for Finnish.

Karttunen implemented it, and showed that that ranking does not
in fact do the job: for example, it gives *kalasteleminen instead of
kalasteleminen

His implementation is a finite state approximation to real OT
(limiting the maximum number of constraint violations), with
various techniques to prune candidate generation efficiently.



Elenbaas in her thesis developed an OT theory of prosody, with
Finnish as the running example. Kiparsky took it up and developed
it further.

They require nine constraints, and they showed that only one
ranking does the job for Finnish.

Karttunen implemented it, and showed that that ranking does not
in fact do the job: for example, it gives *kalasteleminen instead of
kalasteleminen

His implementation is a finite state approximation to real OT
(limiting the maximum number of constraint violations), with
various techniques to prune candidate generation efficiently.



Is OT natural?

The first motivating example in Prince and Smolensky is
syllabification in Imdlawn Tashlhiyt Berber (Dell and Elmedlaoui
1985). Why does this motivate OT?

(Note that discrete prosody is a good place to do OT, because the
meaning of Gen is pretty obvious . . . )



ITB syllabification – overview

ITB has a simple CV(C) syllable structure – but any sound can be
a ‘vowel’.

How are words syllabified? “Simple”.

The most sonorous sounds (vowel or consonant) form the nuclei.
E.g.

txznakkw → txz.nakkw

tftkt → tf.tkt

‘Most sonorous’ is defined in the familiar way (low vowel, high
vowel, liquid, nasal, vcd fric, vcl fric, vcd stop, vcl stop).



ITB syllabification – original account

D&E describe it in terms of two constraints (see later).

They do it by an algorithm to do ‘core syllabification’.

The algorithm refers explicitly to the levels of the sonority
hierarchy:

Let Ti , for i = 1..8, be the set of segments at level i of the
(descending) sonority hierarchy. Ti was given as a feature matrix.
T1 = {a}, T2 = {i , u}, T3 = {l , r}, etc.



The DEA

Input: an array #s1s2 . . . sn of segments.

Output: the array with each segment tagged sC or sV if it’s onset
or nucleus, or s− otherwise.

Algorithm:

tag every segment with −

for i = 1..8 do
for j = 0..n − 1 do

if s−j s−j+1 and sj+1 ∈ Ti then

tag as sCj s
V
j+1

do some patch-up for codas etc.

i.e. “find the most sonorous CV syllables (from the left), then the
next most, and so on”.



ITB syllabification – the OT account (1)

PrS93, chap. 2, adapted for the same notation:

There are two constraints in Con.

Ons: every non-initial syllable must have an onset (i.e. sVj+1 ⇒ sCj
for j > 0)

Hnuc: If x is more sonorous than y , x makes a better nucleus
than y .

Implemented as
A nucleus sV at level i on the sonority scale scores i violations of
Hnuc.

For ITB, Ons� Hnuc.

Gen generates all values of s that are possible syllabifications. (I.e.
every onset is followed by a nucleus.)



ITB syllabification – the OT account (1)

PrS93, chap. 2, adapted for the same notation:

There are two constraints in Con.

Ons: every non-initial syllable must have an onset (i.e. sVj+1 ⇒ sCj
for j > 0)

Hnuc: If x is more sonorous than y , x makes a better nucleus
than y .
Implemented as
A nucleus sV at level i on the sonority scale scores i violations of
Hnuc.

For ITB, Ons� Hnuc.

Gen generates all values of s that are possible syllabifications. (I.e.
every onset is followed by a nucleus.)



‘Why OT is better’

In (fair, I hope) précis:

I The algorithm is aiming to do ‘harmonic evaluation’, i.e. find
the parse with the most harmonic (most sonorous) syllables.

I But it has this artifice of looping over the eight feature
matrices describing the sonority hierarchy.

I And it can be seen a bunch of traditional re-write rules, with
the harmonic evaluation hard-wired into the order of the rules.

I Whereas in OT, harmonic evaluation is the primitive, and is
out front, and

I The harmony is given by the interactions of the simple local
constraints.



ITB syllabification – the OT account (2)

In chap. 8, the OT account that really (or not) does the same as
the algorithm: Con is:

Ons, Parse, *P/�, *M/a
� *M/� � *M/i � . . . � *M/v � . . . � *M/t
� −Cod, *P/t . . .� . . . *P/a

And there are non-trivial definitions embedded in the way harmonic
evaluation really works . . . to which correctness is very sensitive.

The sonority hierarchy is hard-coded again, once forwards and once
backwards.



ITB syllabification – the OT account (2)

In chap. 8, the OT account that really (or not) does the same as
the algorithm: Con is:

Ons, Parse, *P/�, *M/a
� *M/� � *M/i � . . . � *M/v � . . . � *M/t
� −Cod, *P/t . . .� . . . *P/a

And there are non-trivial definitions embedded in the way harmonic
evaluation really works . . . to which correctness is very sensitive.

The sonority hierarchy is hard-coded again, once forwards and once
backwards.



ITB syllabification – the OT account (2)

In chap. 8, the OT account that really (or not) does the same as
the algorithm: Con is:

Ons, Parse, *P/�, *M/a
� *M/� � *M/i � . . . � *M/v � . . . � *M/t
� −Cod, *P/t . . .� . . . *P/a

And there are non-trivial definitions embedded in the way harmonic
evaluation really works . . . to which correctness is very sensitive.

The sonority hierarchy is hard-coded again, once forwards and once
backwards.



Lessons for a pragmatic phonologist?

I Locally, constraints may well be easier to comprehend than
re-write rules. The local interaction of two constraints is also
easy.

I Globally, writing down a correct OT grammar is, um,
challenging.

I Constraints are not very compositional.

Do we need OT to make use of harmony?



Forward to the past

If you don’t like doubly looped algorithms with hard-wired sonority
scales, how about the following account of ITB . . .

Let x � y mean x is more sonorous than y .

Given the input string #−s−1 s−2 . . . s
−
n #−, apply (repeating each

from left before moving on):

1. x−y−z− → xCyVz− if x ≺ y � z
‘a sonority peak must be a syllable peak’

2. x−y−zC → xCyVzC if x ≺ y
‘a pre-consonantal sonority rise makes a syllable’

3. x−y− → xCyV (x 6= #) ‘fill up the rest with CV’

4. x− → xC ‘anything left over is a consonant (onset
initially, coda otherwise)’

E.g. txznakkw
1→ txz.nakkw

2→ t.xz.nakkw
3→ t.xz.na.kkw

4→
.txz.na.kkw



Forward to the past

If you don’t like doubly looped algorithms with hard-wired sonority
scales, how about the following account of ITB . . .

Let x � y mean x is more sonorous than y .

Given the input string #−s−1 s−2 . . . s
−
n #−, apply (repeating each

from left before moving on):

1. x−y−z− → xCyVz− if x ≺ y � z
‘a sonority peak must be a syllable peak’

2. x−y−zC → xCyVzC if x ≺ y
‘a pre-consonantal sonority rise makes a syllable’

3. x−y− → xCyV (x 6= #) ‘fill up the rest with CV’

4. x− → xC ‘anything left over is a consonant (onset
initially, coda otherwise)’

E.g. txznakkw
1→ txz.nakkw

2→ t.xz.nakkw
3→ t.xz.na.kkw

4→
.txz.na.kkw



Forward to the past

If you don’t like doubly looped algorithms with hard-wired sonority
scales, how about the following account of ITB . . .

Let x � y mean x is more sonorous than y .

Given the input string #−s−1 s−2 . . . s
−
n #−, apply (repeating each

from left before moving on):

1. x−y−z− → xCyVz− if x ≺ y � z
‘a sonority peak must be a syllable peak’

2. x−y−zC → xCyVzC if x ≺ y
‘a pre-consonantal sonority rise makes a syllable’

3. x−y− → xCyV (x 6= #) ‘fill up the rest with CV’

4. x− → xC ‘anything left over is a consonant (onset
initially, coda otherwise)’

E.g. txznakkw
1→ txz.nakkw

2→ t.xz.nakkw
3→ t.xz.na.kkw

4→
.txz.na.kkw



Forward to the past

If you don’t like doubly looped algorithms with hard-wired sonority
scales, how about the following account of ITB . . .

Let x � y mean x is more sonorous than y .

Given the input string #−s−1 s−2 . . . s
−
n #−, apply (repeating each

from left before moving on):

1. x−y−z− → xCyVz− if x ≺ y � z
‘a sonority peak must be a syllable peak’

2. x−y−zC → xCyVzC if x ≺ y
‘a pre-consonantal sonority rise makes a syllable’

3. x−y− → xCyV (x 6= #) ‘fill up the rest with CV’

4. x− → xC ‘anything left over is a consonant (onset
initially, coda otherwise)’

E.g. txznakkw
1→ txz.nakkw

2→ t.xz.nakkw
3→ t.xz.na.kkw

4→
.txz.na.kkw



Forward to the past

If you don’t like doubly looped algorithms with hard-wired sonority
scales, how about the following account of ITB . . .

Let x � y mean x is more sonorous than y .

Given the input string #−s−1 s−2 . . . s
−
n #−, apply (repeating each

from left before moving on):

1. x−y−z− → xCyVz− if x ≺ y � z
‘a sonority peak must be a syllable peak’

2. x−y−zC → xCyVzC if x ≺ y
‘a pre-consonantal sonority rise makes a syllable’

3. x−y− → xCyV (x 6= #) ‘fill up the rest with CV’

4. x− → xC ‘anything left over is a consonant (onset
initially, coda otherwise)’

E.g. txznakkw
1→ txz.nakkw

2→ t.xz.nakkw
3→ t.xz.na.kkw

4→
.txz.na.kkw



Forward to the past

If you don’t like doubly looped algorithms with hard-wired sonority
scales, how about the following account of ITB . . .

Let x � y mean x is more sonorous than y .

Given the input string #−s−1 s−2 . . . s
−
n #−, apply (repeating each

from left before moving on):

1. x−y−z− → xCyVz− if x ≺ y � z
‘a sonority peak must be a syllable peak’

2. x−y−zC → xCyVzC if x ≺ y
‘a pre-consonantal sonority rise makes a syllable’

3. x−y− → xCyV (x 6= #) ‘fill up the rest with CV’

4. x− → xC ‘anything left over is a consonant (onset
initially, coda otherwise)’

E.g. txznakkw
1→ txz.nakkw

2→ t.xz.nakkw
3→ t.xz.na.kkw

4→
.txz.na.kkw



Re-write rules with more notational freedom

How nice is the just given account?

− Three rules (plus codas) rather than two constraints (plus
codas)

− With some notation

+ but no external baggage, and

+ no hard-wired sonority hierarchy, only comparison

+ that is strictly local

+ with deterministic generation of the answer.

+ Also can be done on-line with bounded look-ahead (never
need to look beyond the next sonority peak, so no more than
7 segments ahead, usually fewer).



Exploring changes

Neither the DEA, nor PrS’s OT version†, nor mine quite accords
with reality. For example:

DEA PrS here

bddl *.bd.dl .bd.dl .bd.dl

raymmGi .ra.ymm.Gi ?
.ra.ymm.Gi
*.ray.mm.Gi

.ra.ymm.Gi

!itbdrin *.i.tbd.rin ?
*.i.tbd.rin
.it.bd.rin

*.i.tbd.rin

†PrS’s OT account is not the same as the (modified) DEA they present



Summary

You don’t have to do OT to exploit harmony.

‘Choosing the right notation is half the battle’.

Is OT always the right notation?

Maybe you sometimes get more insight from something simpler . . .


